Cryogenic Compressive Strength and Thermal Deformation of Reinforced Polyurethane Foam Material for Membrane Type LNG Carrier

2018 ◽  
Vol 773 ◽  
pp. 30-39 ◽  
Author(s):  
Chang Yong Song ◽  
Doo Yeoun Cho

LNG carrier is purposed to transport a liquefied LNG cargo which is reduced to 1/600 of volume in temperature condition of -163°C. In the context of structural performance on LNG cargo hold, the mechanical and thermal behaviors of insulation material under cryogenic temperature are considered as one of the critical factors for the hold design. This paper deals with the thermal deformation and the compressive strength of the reinforced polyurethane foam (RPUF) adapted for the insulation material of membrane type LNG carrier via both material tests and numerical simulations realizing the cryogenic condition. The material tests related to the thermal deformation are carried out to investigate the characteristics for thermal transfer on the actual RPUF specimen. The heat transfer simulations based on finite element analysis (FEA) are carried out using forced convection theory. The results of heat transfer analyses are compared to the material test results. Reasonable cryogenic conditions on RPUF are reviewed from both the analyses and the test results. In the regard of static material strength for the RPUF, the compressive material tests are carried out. The cryogenic temperature effect on the compressive strength of RPUF is evaluated by comparing to the room temperature material test results. From the compressive material tests, the effect of temperature on the ultimate compressive strength is investigated with variation of elongation.

Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 26 ◽  
Author(s):  
Yeou-Fong Li ◽  
Wai-Keong Sio ◽  
Ying-Kuan Tsai

In this paper, a compressive peak strength model for CFRP-confined thermal insulation materials under elevated temperature was proposed. The thermal insulation material was made by Portland cement with different portions of perlite. The compressive strengths of four different perlite ratios in weight, such as 0%, 10%, 20%, and 30% of thermal insulation materials, confined by one-layer, two-layer, and three-layer carbon fiber-reinforced polymer (CFRP) composite materials, were obtained. The test results indicated that the specimen’s compressive strength decreased with an increase in the amount of perlite replacement and increased with an increase in the number of CFRP wrapping layers. Based on the test results, a theoretical compressive peak strength model with some parameters was proposed. In the meantime, the compressive strengths of the above four different perlite ratios of thermal insulation materials under elevated temperature, such as ambient temperature, 100 °C, 150 °C, 200 °C, 250 °C, and 300 °C, were obtained. For compression tests of specimens with a fixed amount of perlite, the test results indicated that the specimen’s compressive strength decreased with an increase in temperature, highlighting a thermal softening phenomenon. Based on the test results, a compressive peak strength model with a thermal softening parameter was proposed to predict the peak strength under elevated temperature. Finally, a compressive peak strength model for thermal insulation material with CFRP confinement under different elevated temperature was derived, and it achieved acceptable results in comparison to the experimental results.


Author(s):  
Ryuta Hashidate ◽  
Shoichi Kato ◽  
Takashi Onizawa ◽  
Takashi Wakai ◽  
Naoto Kasahara

Abstract Nuclear structure’s integrity must be confirmed under severe accident conditions. However, performing structure tests using actual steels is very difficult and expensive. Therefore, the authors conducted structure tests using the lead alloy to evaluate the structure integrity under severe accident conditions. Because the strength of the lead alloy is considerably less than that of actual steels, structure tests can be conducted under low-pressure, low-temperature conditions. To quantitatively correlate the structural response of the lead alloy to that of actual steels, finite-element analyses (FEAs) must be performed. Because the inelastic constitutive equations, namely, inelastic stress–strain relationship equation, creep rupture equation, and creep strain equation, are required to perform the inelastic FEA, the authors introduced material tests using the lead alloy and, subsequently, proposed the inelastic constitutive equations based on the material test results in a previously conducted PVP conference. However, the proposed inelastic constitutive equations could not successfully express the material characteristic of the lead alloy because of large variations observed in the material tests of the lead alloy. Furthermore, the authors observed that the material characteristic of the lead alloy could be stabilized by aging. In this study, we propose the improved inelastic constitutive equations of the lead alloy on the basis of test results newly obtained from a series of material test performed using aged alloy.


2014 ◽  
Vol 541-542 ◽  
pp. 104-107
Author(s):  
Long Ma ◽  
Guo Zhong Li

Red mud foam lightweight thermal insulation material was prepared by red mud, fly ash, cement as main raw materials, adding a certain amount of adhesive, through ingredients, mixing, molding, foam, sintering process. The influence of the ratio of red mud and fly ash on the properties of materials was studied and the mechanism of influence was analyzed. The test results show that performances of the samples were best when the ratio of red mud and fly ash is 5:4 and its flexural strength is 0.44MPa, compressive strength is 1.23MPa, density is 481kg/m3.


2018 ◽  
Vol 9 (2) ◽  
pp. 67-73
Author(s):  
M Zainul Arifin

This research was conducted to determine the value of the highest compressive strength from the ratio of normal concrete to normal concrete plus additive types of Sika Cim with a composition variation of 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1 , 50% and 1.75% of the weight of cement besides that in this study also aims to find the highest tensile strength from the ratio of normal concrete to normal concrete in the mixture of sika cim composition at the highest compressive strength above and after that added fiber wire with a size diameter of 1 mm in length 100 mm with a ratio of 1% of material weight. The concrete mix plan was calculated using the ASTM method, the matrial composition of the normal concrete mixture as follows, 314 kg / m3 cement, 789 kg / m3 sand, 1125 kg / m3 gravel and 189 liters / m3 of water at 10 cm slump, then normal concrete added variations of the composition of sika cim 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1.5%, 1.75% by weight of cement and fiber, the tests carried out were compressive strength of concrete and tensile strength of concrete, normal maintenance is soaked in fresh water for 28 days at 30oC. From the test results it was found that the normal concrete compressive strength at the age of 28 days was fc1 30 Mpa, the variation in the addition of the sika cim additive type mineral was achieved in composition 0.75% of the cement weight of fc1 40.2 Mpa 30C. Besides that the tensile strength test results were 28 days old with the addition of 1% fiber wire mineral to the weight of the material at a curing temperature of 30oC of 7.5%.


2013 ◽  
Vol 12 (3) ◽  
Author(s):  
Sudarmadi Sudarmadi

In this paper a case study about concrete strength assessment of bridge structure experiencing fire is discussed. Assessment methods include activities of visual inspection, concrete testing by Hammer Test, Ultrasonic Pulse Velocity Test, and Core Test. Then, test results are compared with the requirement of RSNI T-12-2004. Test results show that surface concrete at the location of fire deteriorates so that its quality is decreased into the category of Very Poor with ultrasonic pulse velocity ranges between 1,14 – 1,74 km/s. From test results also it can be known that concrete compressive strength of inner part of bridge pier ranges about 267 – 274 kg/cm2 and concrete compressive strength of beam and plate experiencing fire directly is about 173 kg/cm2 and 159 kg/cm2. It can be concluded that surface concrete strength at the location of fire does not meet the requirement of RSNI T-12-2004. So, repair on surface concrete of pier, beam, and plate at the location of fire is required.


2021 ◽  
Vol 13 (13) ◽  
pp. 7115
Author(s):  
Mostafa Kazemi ◽  
Luc Courard ◽  
Julien Hubert

A green roof is composed of a substrate and drainage layers which are fixed on insulation material and roof structure. The global heat resistance (Rc) within a green roof is affected by the humidity content of the substrate layer in which the coarse recycled materials can be used. Moreover, the utilization of recycled coarse aggregates such as incinerated municipal solid waste aggregate (IMSWA) for the drainage layer would be a promising solution, increasing the recycling of secondary resources and saving natural resources. Therefore, this paper aims to investigate the heat transfer across green roof systems with a drainage layer of IMSWA and a substrate layer including recycled tiles and bricks in wet and dry states according to ISO-conversion method. Based on the results, water easily flows through the IMSWAs with a size of 7 mm. Meanwhile, the Rc-value of the green roof system with the dry substrate (1.26 m2 K/W) was 1.7 times more than that of the green roof system with the unsaturated substrate (0.735 m2 K/W). This means that the presence of air-spaces in the dry substrate provided more heat resistance, positively contributing to heat transfer decrease, which is also dependent on the drainage effect of IMSWA. In addition, the Rc-value of the dry substrate layer was about twice that of IMSWA as the drainage layer. No significant difference was observed between the Rc-values of the unsaturated substrate layer and the IMSWA layer.


2021 ◽  
Vol 11 (3) ◽  
pp. 1037
Author(s):  
Se-Jin Choi ◽  
Ji-Hwan Kim ◽  
Sung-Ho Bae ◽  
Tae-Gue Oh

In recent years, efforts to reduce greenhouse gas emissions have continued worldwide. In the construction industry, a large amount of CO2 is generated during the production of Portland cement, and various studies are being conducted to reduce the amount of cement and enable the use of cement substitutes. Ferronickel slag is a by-product generated by melting materials such as nickel ore and bituminous coal, which are used as raw materials to produce ferronickel at high temperatures. In this study, we investigated the fluidity, microhydration heat, compressive strength, drying shrinkage, and carbonation characteristics of a ternary cement mortar including ferronickel-slag powder and fly ash. According to the test results, the microhydration heat of the FA20FN00 sample was slightly higher than that of the FA00FN20 sample. The 28-day compressive strength of the FA20FN00 mix was approximately 39.6 MPa, which was higher than that of the other samples, whereas the compressive strength of the FA05FN15 mix including 15% of ferronickel-slag powder was approximately 11.6% lower than that of the FA20FN00 mix. The drying shrinkage of the FA20FN00 sample without ferronickel-slag powder was the highest after 56 days, whereas the FA00FN20 sample without fly ash showed the lowest shrinkage compared to the other mixes.


2018 ◽  
Vol 53 ◽  
pp. 04021
Author(s):  
SHAO Yong ◽  
LIU Xiao-li ◽  
ZHU Jin-jun

Industrial alkali slag is the discharge waste in the process of alkali production. About one million tons of alkali slag is discharged in China in one year. It is a burden on the environment, whether it is directly stacked or discharged into the sea. If we can realize the use of resources, it is a multi-pronged move, so alkali slag is used to improve solidified marine soft soil in this paper. The test results show that the alkali residue can effectively improve the engineering properties of marine soft soil. Among them, the unconfined compressive strength and compressive modulus are increased by about 10 times, and the void ratio and plasticity index can all reach the level of general clay. It shows that alkali slag has the potential to improve marine soft soil and can be popularized in engineering.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yu Zheng ◽  
Xudong Luo ◽  
Jinlong Yang ◽  
Wenlong Huo ◽  
Chi Kang

A novel approach is used for fabricating steel slag foam ceramics based on the particle-stabilized foaming method. In this work, steel slag was used as the raw material and propyl gallate (PG) was used as the surface modifier. For the first time, steel slag ceramic foams were successfully fabricated based on particle-stabilized foams. The results show that the stability of the ceramic foams was closely related to the pH value and PG concentration. The porosity and compressive strength could be controlled by changing the solid loading of steel slag and sintering temperature. The porosity of steel slag foam ceramics ranged from 85.6% to 62.53%, and the compressive strength was from 1.74 MPa to 10.42 MPa. The thermal conductivity of steel slag foam ceramics was only 0.067 W (m·K)−1, which shows that it could be used as a thermal insulation material.


2011 ◽  
Vol 121-126 ◽  
pp. 126-131 ◽  
Author(s):  
Qing Lei Xu ◽  
Tao Meng ◽  
Miao Zhou Huang

In this paper, effects of nano-CaCO3 on compressive strength and Microstructure of high strength concrete in standard curing temperature(21±1°C) and low curing temperature(6.5±1°C) was studied. In order to improve the early strength of the concrete in low temperature, the early strength agent calcium nitrite was added into. Test results indicated that 0.5% dosage of nano-CaCO3 could inhibit the effect of calcium nitrite as early strength agent, but 1% and 2% dosage of nano-CaCO3 could improve the strength of the concrete by 13% and 18% in standard curing temperature and by 17% and 14% in low curing temperature at the age of 3days. According to the XRD spectrum, with the dosage up to 1% to 2%, nano-CaCO3 can change the orientation index significantly, leading to the improvement of strength of concrete both in standard curing temperature and low curing temperature.


Sign in / Sign up

Export Citation Format

Share Document