Correlation of Strength with Hardness and Electrical Conductivity for Aluminium Alloy 7010

2006 ◽  
Vol 519-521 ◽  
pp. 853-858 ◽  
Author(s):  
Manuel A. Salazar-Guapuriche ◽  
Y.Y. Zhao ◽  
Adam Pitman ◽  
Andrew Greene

The tensile strength, proof strength, hardness and electrical conductivity of Al alloy 7010 under different temper and ageing conditions were investigated with the aim to correlate strength with hardness and electrical conductivity so that the strength of the alloy can be determined nondestructively. Following the solutionising treatment, continuous age hardening was performed on a series of test coupons, taken from a large plate, to produce a wide range of precipitation hardening conditions, which gave rise to progressive variations of strength, hardness and conductivity. The relationship between strength and hardness was found to be reasonably linear, whereas the relationship between hardness and strength with electrical conductivity was non-linear. The ageing conditions and therefore the mechanical properties of the components can be predicted more accurately by the simultaneous combination of hardness and conductivity values.

2021 ◽  
Vol 21 (9) ◽  
pp. 4897-4901
Author(s):  
Hyo-Sang Yoo ◽  
Yong-Ho Kim ◽  
Hyeon-Taek Son

In this study, changes in the microstructure, mechanical properties, and electrical conductivity of cast and extruded Al–Zn–Cu–Mg based alloys with the addition of Li (0, 0.5 and 1.0 wt.%) were investigated. The Al–Zn–Cu–Mg–xLi alloys were cast and homogenized at 570 °C for 4 hours. The billets were hot extruded into rod that were 12 mm in diameter with a reduction ratio of 38:1 at 550 °C. As the amount of Li added increased from 0 to 1.0 wt.%, the average grain size of the extruded Al alloy increased from 259.2 to 383.0 µm, and the high-angle grain boundaries (HGBs) fraction decreased from 64.0 to 52.1%. As the Li content increased from 0 to 1.0 wt.%, the elongation was not significantly different from 27.8 to 27.4% and the ultimate tensile strength (UTS) was improved from 146.7 to 160.6 MPa. As Li was added, spherical particles bonded to each other, forming an irregular particles. It is thought that these irregular particles contribute to the strength improvement.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1483
Author(s):  
Jinxin Zang ◽  
Pan Dai ◽  
Yanqing Yang ◽  
Shuai Liu ◽  
Bin Huang ◽  
...  

The requirement for 7085 Al alloy as large airframe parts has been increasing due to its low quenching sensitivity and high strength. However, the relationship between high temperature mechanical properties and the evolution of precipitates in hot environments is still unclear. In this work, thermal exposure followed by tensile tests were conducted on the 7085 Al alloy at various temperatures (100 °C, 125 °C, 150 °C and 175 °C). Variations of hardness, electrical conductivity and tensile properties were investigated. The evolution of the nano scale precipitates was also quantitatively characterized by transmission electron microscopy (TEM). The results show that the hardness and electrical conductivity of the alloy are more sensitive to the temperature than to the time. The strength decreases continuously with the increase of temperature due to the transformation from η′ to η phase during the process. Furthermore, the main η phase in the alloy transformed from V3 and V4 to V1 and V2 variants when the temperature was 125 °C. Additionally, with increasing the temperature, the average precipitate radius increased, meanwhile the volume fraction and number density of the precipitates decreased. The strengthening effect of nano scale precipitates on tensile properties of the alloy was calculated and analyzed.


2010 ◽  
Vol 654-656 ◽  
pp. 2568-2571 ◽  
Author(s):  
Genjiro Hagino ◽  
Hayao Eguchi ◽  
Yoshimasa Takayama ◽  
Hajime Kato

The influences of solution treatments, prior cold drawings and aging treatments on mechanical properties in Corson alloy with high contents more than 8.0 mass% of Ni and Si have been investigated. As a result of the optimization of conditions, the maximum hardness and tensile strength reached 306HV and 968MPa, respectively. Effects of temperatures of solution treatment and aging on the mechanical properties were analyzed based on solid solute concentrations in matrix phase, which were estimated by using the linear analysis and calculated from the electrical conductivity. The solute concentrations were also measured directly by SEM-EDS. Consequently, the precipitation hardening of the alloys was governed mainly by the solute concentrations of Ni and Si in matrix phase in solution treatment. The hardness depended on not only the solute concentrations but also the excess of Ni and Si in the alloys.


2019 ◽  
Vol 13 (1) ◽  
pp. 4380-4389
Author(s):  
Gowrishankar M. C. ◽  
Sathyashankara Sharma ◽  
B. K. Pavan ◽  
Kamath Kiran ◽  
Kumar Rajendra ◽  
...  

Aluminium alloy matrix composites with Al2O3 reinforcements exhibit superior mechanical properties and utilize in several demanding fields’ viz., automobile, aerospace, defense, sports equipment, electronics and bio-medical. The present work emphasizes on improvement of microstructure and mechanical properties of age hardened graphite and alumina reinforced Al alloy matrix hybrid composites. Different composites with a constant carbon content of 1 weight % and 0, 2, 4 and 6 weight % Al2O3 as reinforcements are fabricated by using stir casting technic and tested for hardness, tensile and impact strength. Scanning electron microscopy (SEM) is performed to analyse the failure mode under tensile load. All the composites are subjected to age hardening treatment with solutionising temperature of 530oC and aging temperatures of 100 and 200oC. The peak hardness of the composites at two aging temperatures are noted. Tensile and impact tests are conducted for the peak aged specimens.  Results show substantial increase in the hardness of the age hardened specimens in the range of 34-44% in comparison with the as cast specimens. Result analysis shows increase in tensile strength (upto 40%) and decrease in impact resistance (upto 33%) with the increase in weight % of reinforcements. As the aging temperature increases a reduction in tensile strength and impact resistance is observed in each composites.


2017 ◽  
Vol 891 ◽  
pp. 343-349 ◽  
Author(s):  
Libor Pantělejev ◽  
Daniel Koutný ◽  
David Paloušek ◽  
Jozef Kaiser

Paper deals with the comparison of mechanical properties and microstructure of aluminium alloy 2618 fabricated by Selective Laser Melting (SLM) and material of the same grade manufactured by standard extrusion process. The SLM specimens were fabricated with different processing strategies (meander and remelting). Presence of cracks was found in both cases of used strategies, but in case of meander strategy, crack are of shorter character and distributed rather within individual welds. In case of remelting strategy, cracks are oriented mostly parallel to building direction and transcend fusion boundaries (FB) across several layers. It was found that defects present in microstructure of SLM material significantly affect its mechanical properties. Ultimate tensile strength (UTS) for extruded material reached 392 MPa, while for SLM material produced with meander strategy UTS was 273 MPa and for remelting strategy it was 24 MPa only.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 548 ◽  
Author(s):  
Leonid Agureev ◽  
Valeriy Kostikov ◽  
Zhanna Eremeeva ◽  
Svetlana Savushkina ◽  
Boris Ivanov ◽  
...  

The article presents the study of alumina nanoparticles’ (nanofibers) concentration effect on the strength properties of pure nickel. The samples were obtained by spark plasma sintering of previously mechanically activated metal powders. The dependence of the grain size and the relative density of compacts on the number of nanofibers was investigated. It was found that with an increase in the concentration of nanofibers, the average size of the matrix particles decreased. The effects of the nanoparticle concentration (0.01–0.1 wt.%) on the elastic modulus and tensile strength were determined for materials at 25 °C, 400 °C, and 750 °C. It was shown that with an increase in the concentration of nanofibers, a 10–40% increase in the elastic modulus and ultimate tensile strength occurred. A comparison of the mechanical properties of nickel in a wide range of temperatures, obtained in this work with materials made by various technologies, is carried out. A description of nanofibers’ mechanisms of influence on the structure and mechanical properties of nickel is given. The possible impact of impurity phases on the properties of nickel is estimated. The tendency of changes in the mechanical properties of nickel, depending on the concentration of nanofibers, is shown.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 94
Author(s):  
Petar Janjatovic ◽  
Olivera Eric Cekic ◽  
Leposava Sidjanin ◽  
Sebastian Balos ◽  
Miroslav Dramicanin ◽  
...  

Austempered ductile iron (ADI) is an advanced cast iron material that has a broad field of application and, among others, it is used in contact and for conveyance of fluids. However, it is noticed that in contact with some fluids, especially water, ADI material becomes brittle. The most significant decrease is established for the elongation. However, the influence of water and the cause of this phenomenon is still not fully understood. For that reason, in this paper, the influence of different water concentrations in ethyl alcohol on the mechanical properties of ADI materials was studied. The test was performed on two different types of ADI materials in 0.2, 4, 10, and 100 vol.% water concentration environments, and in dry condition. It was found that even the smallest concentration of water (0.2 vol.%) causes formation of the embrittled zone at fracture surface. However, not all mechanical properties were affected equally and not all water concentrations have been critical. The highest deterioration was established in the elongation, followed by the ultimate tensile strength, while the proof strength was affected least.


2014 ◽  
Vol 887-888 ◽  
pp. 824-829
Author(s):  
Qing Fang Lv ◽  
Ji Hong Qin ◽  
Ran Zhu

Laminated veneer lumber is taken as an object of study, and use LVL specimens of different sizes for compression test and tensile test. The goal of the experiment is to investigate the size effect on compressive strength and tensile strength as well as the influence of the secondary glued laminated face, which appears in the secondary molding processes. The results show that both compressive strength and tensile strength have the size effect apparently and the existence of the secondary glued laminated face lower the compressive strength of LVL specimens. Afterwards, the relationship between compressive strength and volume along with tensile strength and area are obtained by the test results.


2021 ◽  
Vol 1026 ◽  
pp. 84-92
Author(s):  
Tao Qian Cheng ◽  
Zhi Hui Li

Al-Zn-Mg-Cu alloy have been widely used in aerospace industry. However, there is still a lack of research on thermal stability of Al-Zn-Mg-Cu alloy products. In the present work, an Al-Zn-Mg-Cu alloy with T79 and T74 states was placed in the corresponding environment for thermal exposure experiments. Performance was measured by tensile strength, hardness and electrical conductivity. In this paper, precipitation observation was analyzed by transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HREM). The precipitations of T79 state alloy were GPⅡ zone, η' phase and η phase while the ultimate tensile strength, hardness and electrical conductivity were 571MPa, 188.2HV and 22.2MS×m-1, respectively. The mechanical property of T79 state alloy decreased to 530MPa and 168.5HV after thermal exposure. The diameter of precipitate increased and the precipitations become η' and η phase at the same time. During the entire thermal exposure, T74 state alloy had the same mechanical property trend as T79 state alloy. The precipitate diameter also increased while the types of precipitate did not change under thermal exposure. The size of precipitates affected the choice of dislocation passing through the particles to affect the mechanical properties.


2022 ◽  
Vol 327 ◽  
pp. 82-97
Author(s):  
He Qin ◽  
Guang Yu Yang ◽  
Shi Feng Luo ◽  
Tong Bai ◽  
Wan Qi Jie

Microstructures and mechanical properties of directionally solidified Mg-xGd (5.21, 7.96 and 9.58 wt.%) alloys were investigated at a wide range of growth rates (V = 10-200 μm/s) under the constant temperature gradient (G = 30 K/mm). The results showed that when the growth rate was 10 μm/s, different interface morphologies were observed in three tested alloys: cellular morphology for Mg-5.21Gd alloy, a mixed morphology of cellular structure and dendritic structure for Mg-7.96Gd alloy and dendrite morphology for Mg-9.58Gd alloy, respectively. Upon further increasing the growth rate, only dendrite morphology was exhibited in all experimental alloys. The microstructural parameters (λ1, λ2) decreased with increasing the growth rate for all the experimental alloy, and the measured λ1 and λ2 values were in good agreement with Trivedi model and Kattamis-Flemings model, respectively. Vickers hardness and the ultimate tensile strength increased with the increase of the growth rate and Gd content, while the elongation decreased gradually. Furthermore, the relationships between the hardness, ultimate tensile strength, the growth rate and the microstructural parameters were discussed and compared with the previous experimental results.


Sign in / Sign up

Export Citation Format

Share Document