ChemInform Abstract: Conversion of Hydroxyl Groups in Alcohols to Other Functional Groups with N-Hydroxy-2-thiopyridone, and Its Application to Dialkylamines and Thiols.

ChemInform ◽  
2010 ◽  
Vol 22 (17) ◽  
pp. no-no
Author(s):  
H. TOGO ◽  
M. FUJII ◽  
M. YOKOYAMA
Crystals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 62
Author(s):  
Xu Xu ◽  
Zeping Zhang ◽  
Wenjuan Yao

Graphene and graphene oxide (GO) usually have grain boundaries (GBs) in the process of synthesis and preparation. Here, we “attach” GBs into GO, a new molecular configuration i.e., polycrystalline graphene oxide (PGO) is proposed. This paper aims to provide an insight into the stability and mechanical properties of PGO by using the molecular dynamics method. For this purpose, the “bottom-up” multi-structure-spatial design performance of PGO and the physical mechanism associated with the spatial structure in mixed dimensions (combination of sp2 and sp3) were studied. Also, the effect of defect coupling (GBs and functional groups) on the mechanical properties was revealed. Our results demonstrate that the existence of the GBs reduces the mechanical properties of PGO and show an “induction” role during the tensile fracture process. The presence of functional groups converts in-plane sp2 carbon atoms into out-of-plane sp3 hybrid carbons, causing uneven stress distribution. Moreover, the mechanical characteristics of PGO are very sensitive to the oxygen content of functional groups, which decrease with the increase of oxygen content. The weakening degree of epoxy groups is slightly greater than that of hydroxyl groups. Finally, we find that the mechanical properties of PGO will fall to the lowest values due to the defect coupling amplification mechanism when the functional groups are distributed at GBs.


2021 ◽  
Author(s):  
Katerina S. Karadima ◽  
Vlasis G. Mavrantzas ◽  
Spyros N. Pandis

<p>Organic aerosols have been typically considered to be liquid, with equilibration between gas and aerosol phase assumed to be reached within seconds. However, Virtanen et al. (Nature, 2010) suggested that particles in amorphous solid state may also occur in the atmosphere implying that mass transfer between the atmospheric particulate and gas phases may be much slower than initially thought. Experimentally, the direct measurement of the diffusion coefficients of different compounds inside atmospheric organic particles is challenging. Thus, an indirect approach is usually employed, involving viscosity measurements and then estimation of diffusion coefficients via the Stokes-Einstein equation, according to which the diffusion coefficient is inversely proportional to the medium viscosity. However, the corresponding diffusion estimates are highly uncertain, especially for highly viscous aerosols which is the most important case. Molecular simulation methods, such as molecular dynamics (MD), can be an alternative method to determine directly the diffusion rates and the viscosity of the constituents of atmospheric organic particles. MD also provides detailed information of the exact dynamics and motion of the molecules, thus offering a deeper understanding on the underlying mechanisms and interactions.</p><p>In the present work, we use equilibrium and non-equilibrium MD simulations to estimate the viscosity and diffusion coefficients of bulk systems of representative organic compounds with different chemical structures and physicochemical characteristics. Hydrophilic and hydrophobic compounds representative of primary and secondary oxidized organic products and of primary organic compounds emitted by various sources are considered. The viscosity and self-diffusion coefficients calculated by our simulations are in good agreement with available experimentally measured values. Our results confirm that the presence of carboxyl and hydroxyl groups in the molecule increases the viscosity. The number of carboxyl and hydroxyl groups, in particular, seems to have a good effect on diffusivity (the diffusivity decreases as the number of these functional groups increase), and to a lesser extent on the viscosity. We also discuss the role of the hydrogen bonds formed between these functional groups.</p>


2018 ◽  
Vol 232 (3) ◽  
pp. 409-430 ◽  
Author(s):  
Sarah K. Sihvonen ◽  
Kelly A. Murphy ◽  
Nancy M. Washton ◽  
Muhammad Bilal Altaf ◽  
Karl T. Mueller ◽  
...  

AbstractMineral dust aerosol participates in heterogeneous chemistry in the atmosphere. In particular, the hydroxyl groups on the surface of aluminosilicate clay minerals are important for heterogeneous atmospheric processes. These functional groups may be altered by acidic processing during atmospheric transport. In this study, we exposed kaolinite (KGa-1b) and montmorillonite (STx-1b) to aqueous sulfuric acid and then rinsed the soluble reactants and products off in order to explore changes to functional groups on the mineral surface. To quantify the changes due to acid treatment of edge hydroxyl groups, we use19F magic angle spinning nuclear magnetic resonance spectroscopy and a probe molecule, 3,3,3-trifluoropropyldimethylchlorosilane. We find that the edge hydroxyl groups (OH) increase in both number and density with acid treatment. Chemical reactions in the atmosphere may be impacted by the increase in OH at the mineral edge.


2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744093
Author(s):  
Z. Shao ◽  
A. Ogino ◽  
M. Nagatsu

Ar/H2O microwave-excited surface-wave plasma-induced grafting-polymerization and crosslinking technique was presented to construct a bio-functional surface layer. Optical emission spectroscopy was used to diagnose Ar/H[Formula: see text]O plasma. The surface/interface behavior especially the aging effect of hydroxyl groups over the grafted PEG spacer layer was investigated by measuring water contact angle and X-ray photoelectron spectroscopy. The results demonstrate that the addition of water vapor into Ar plasma can optimize the concentration of hydroxyl functional groups on surface; grafted PEG spacer layer can provide a long-term hydrophilicity of PU films, and alleviate the aging effect of hydroxyl functional groups.


The Analyst ◽  
2015 ◽  
Vol 140 (6) ◽  
pp. 1965-1973 ◽  
Author(s):  
Yohei Sakaguchi ◽  
Tomoya Kinumi ◽  
Taichi Yamazaki ◽  
Akiko Takatsu

We have developed a novel amino acid analysis method using derivatization of multiple functional groups (amino, carboxyl, and phenolic hydroxyl groups).


2020 ◽  
Author(s):  
Ying-Ying Yang ◽  
Wen-Tao Zhou ◽  
Wei-Long Song ◽  
Qing-Quan Zhu ◽  
Hao-Jiang Xiong ◽  
...  

Abstract Both multilayered (ML) and few-layered (FL) Ti3C2Tx nanosheets with different dominant terminal groups have been prepared through a typical etching and delaminating procedure. Various characterizations confirm that the physical and chemical performance of the nanosheets are dependent on the dominant functional groups. It has been demonstrated that ML-Ti3C2Tx has been mainly terminated by O-related groups, which result in better oxidation resistance and stronger near-field enhancement effect. As for FL-Ti3C2Tx, which is mainly terminated by hydroxyl groups, it can be better dispersed in aqueous solution and could confine stronger near-field after coupling to Ag nanostructures by electron injection.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Bob Howell ◽  
Tracy Zhang ◽  
Patrick Smith

Hyperbrached poly(ester)s derived from naturally-occurring biomonomers may serve as excellent platforms for the sustained-release of therapeutics. Those generated from glycerol are particularly attractive. Traditionally, the difference in reactivity of the hydroxyl groups of glycerol has precluded the formation of well-defined polymers at high monomer conversion without gelation. Using the Martin-Smith model to select appropriate monomer ratios (ratios of functional groups), polymerization may be carried out to high conversion while avoiding gelation and with the assurance of a single type of endgroup. Various agents may be attached via esterification, amide formation or other process. Sustained release of the active agent may be readily achieved by enzyme-catalyzed hydrolysis.


Author(s):  
Anthony S. R. Juo ◽  
Kathrin Franzluebbers

Soil chemistry deals with the chemical properties and reactions of soils. It is essentially the application of electrochemistry and colloid chemistry to soil systems. Major topics include surface charge properties of soil colloids, cation and anion sorption and exchange, soil acidity, soil alkalinity, soil salinity, and the effects of these chemical properties and processes on soil biological activity, plant growth, and environmental quality. The ability of the electrically charged surface of soil colloids to retain nutrient cations and anions is an important chemical property affecting the fertility status of the soil. There are two major sources of electrical charges on soil organic and inorganic colloids, namely, permanent or constant charges and variable or pH-dependent charges. Permanent or constant charges are the result of the charge imbalance brought about by isomorphous substitution in a mineral structure of one cation by another of similar size but differing valence (see also section 2.3.2). For example, the substitution of Mg2+ for Al3+ that occurs in Al-dominated octahedral sheets of 2:1 clay minerals results in a negative surface charge in smectite, vermiculite, and chlorite. The excess negative charges are then balanced by adsorbed cations to maintain electrical neutrality. Permanent negative charges of all 2:1 silicate minerals arise from isomorphous substitutions. The l:l-type clay mineral, kaolinite, has only a minor amount of permanent charge due to isomorphic substitution. The negative charges on kaolinite originate from surface hydroxyl groups on the edge of the mineral structure and are pH-dependent. Variable or pH-dependent charges occur on the surfaces of Fe and Al oxides, allophanes, and organic soil colloids. This type of surface charge originates from hydroxyl groups and other functional groups by releasing or accepting H+ ions, resulting in either negative or positive charges. Other functional groups are hydroxyl (OH) groups of Fe and/or Al oxides and allophanes and the COOH and OH groups of soil organic matter. Variable-charge soil colloids bear either a positive or a negative net surface charge depending on the pH of the soil. The magnitude of the charge varies with the electrolyte concentration of the soil solution.


2012 ◽  
Vol 610-613 ◽  
pp. 3591-3598
Author(s):  
Yi Chao Lee ◽  
Shui Ping Chang ◽  
Chih Sheng Lee ◽  
Nien Hsin Kao

The Cladophora and Spirogyra genera are classified within the green algae division. Species belonging to these genera comprise large filamentous algae, possess significant biomass, and are found in freshwater around the world. These characteristics give Cladophora and Spirogyra high potential to be developed as biological materials. For this study, we harvested fresh Cladophora and Spirogyra and produced algae powder using two of conventional procedures: with pigment extraction and without pigment extraction. The resulting algae powders were subjected to Pb(II) biosorption, and the differences in biosorption rates were subsequently analyzed. Our study found the following: (i) significant differences in cell structure, cell wall thickness, the type and content of cell composition, and the quantity of epiphytes between Cladophora and Spirogyra. This variation influenced the functional groups within the resulting algae powders and their binding sites, which further led to different levels of Pb(II) adsorption. (ii) Glacial acetic acid, a compound commonly employed in pigment extraction procedures, affected the functional groups and the binding sites of the resulting algae powders. For Cladophora algae powder, Pb(II) biosorption was reduced by 16.6 %; whereas for Spirogyra algae powder, Pb(II) biosorption was reduced by 19.8 %. (iii) The pigment extraction procedure exerted the most significant influence on the carbonyl groups and hydroxyl groups in algae powder. (iv) The pigment extraction procedure is not suitable for the preparation of algae powders which will be used for metal ion biosorption.


2014 ◽  
Vol 809-810 ◽  
pp. 243-247
Author(s):  
Zhi Jia Luo ◽  
Hong Zhang Geng ◽  
Song Ting Zhang ◽  
Bao Tan Du ◽  
Xing Zhang ◽  
...  

Graphene oxide (GO) is typically synthesized by graphite powder under strong oxidizing reaction, possessing with the same set of functional groups: epoxy and hydroxyl in basal plane and carboxyl and hydroxyl groups existence on the flake edges which endow GO with amphipathy. GO and its functionalized derivatives have been successfully tested in many domains, such as polymer composites, biosensors, drug delivery systems, etc. In this paper, GO was prepared by a modified Hummers method employing improved process (preparation and separation), aiming at industrialization with the lowest cost. Moreover, some novel functional groups with different properties were controlled chemically grafted onto GO to modify the wettability and reaction activity with other materials. The hydrophobicity and the thermal property of graphene oxide were enhanced by chemical functionalization.


Sign in / Sign up

Export Citation Format

Share Document