scholarly journals Evaluation of Single Event Upset Susceptibility of FinFET-based SRAMs with Weak Resistive Defects

Author(s):  
Thiago Copetti ◽  
Guilherme Cardoso Medeiros ◽  
Mottaqiallah Taouil ◽  
Said Hamdioui ◽  
Letícia Bolzani Poehls ◽  
...  

AbstractFin Field-Effect Transistor (FinFET) technology enables the continuous downscaling of Integrated Circuits (ICs), using the Complementary Metal-Oxide Semiconductor (CMOS) technology in accordance with the More Moore domain. Despite demonstrating improvements on short channel effect and overcoming the growing leakage problem of planar CMOS technology, the continuity of feature size miniaturization tends to increase sensitivity to Single Event Upsets (SEUs) caused by ionizing particles, especially in blocks with higher transistor densities such as Static Random-Access Memories (SRAMs). Variation during the manufacturing process has introduced different types of defects that directly affect the SRAM's reliability, such as weak resistive defects. As some of these defects may cause dynamic faults, which require more than one consecutive operation to sensitize the fault at the logic level, traditional test approaches may fail to detect them, and test escapes may occur. These undetected faults, associated with weak resistive defects, may affect the FinFET-based SRAM reliability during its lifetime. In this context, this paper proposes to investigate the impact of ionizing particles on the reliability of FinFET-based SRAMs in the presence of weak resistive defects. Firstly, a TCAD model of a FinFET-based SRAM cell is proposed allowing the evaluation of the ionizing particle’s impact. Then, SPICE simulations are performed considering the current pulse parameters obtained with TCAD. In this step, weak resistive defects are injected into the FinFET-based SRAM cell. Results show that weak defects can positively or negatively influence the cell reliability against SEUs caused by ionizing particles.


Author(s):  
Shashi Bala ◽  
Mamta Khosla ◽  
Raj Kumar

As the feature size of device has been scaling down for many decades, conventional CMOS technology-based static random access memory (SRAM) has reached its limit due to significant leakage power. Therefore, carbon nanotube field effect transistor (CNTFET) can be considered most suitable alternative for SRAM. In this chapter, the performance and stability of CNTFET-based SRAM cells have been analyzed. Numerous figures of merit (FOM) (e.g., read/write noise margin, power dissipation, and read/write delay) have been considered to analyze the performance of CNTFET-based. The static power consumption in CNTFET-based SRAM cell was compared with conventional complementary metal oxide semiconductor (CMOS)-based SRAM cell. Conventional CNTFET and tunnel CNTFET-based SRAMs have also been considered for comparison. From the simulation results, it is observed that tunnel CNTFET SRAM cells have shown improved FOM over conventional CNTFET 6T SRAM cells without losing stability.



2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Vandna Sikarwar ◽  
Saurabh Khandelwal ◽  
Shyam Akashe

Scaling of devices in bulk CMOS technology leads to short-channel effects and increase in leakage. Static random access memory (SRAM) is expected to occupy 90% of the area of SoC. Since leakage becomes the major factor in SRAM cell, it is implemented using FinFET. Further, double-gate FinFET devices became a better choice for deep submicron technologies. With this consideration in our research work, 6T SRAM cell is implemented using independent-gate DG FinFET in which both the opposite sides of gates are controlled independently which provides better scalability to the SRAM cell. The device is implemented using different leakage reduction techniques such as gated-Vdd technique and multithreshold voltage technique to reduce leakage. Therefore, power consumption in the SRAM cell is reduced and provides better performance. Independent-gate FinFET SRAM cell using various leakage reduction techniques has been simulated using Cadence virtuoso tool in 45 nm technology.



2020 ◽  
Vol 24 (1) ◽  
Author(s):  
Rekib Uddin Ahmed ◽  
Prabir Saha

Nowadays, the endlessly increasing demand for faster and complex integrated circuits (IC) has been fuelled by the scaling of metal-oxide-semiconductor field-effect-transistors (MOSFET) to smaller dimensions. The continued scaling of MOSFETs approaches its physical limits due to short-channel effects (SCE). Double-gate (DG) MOSFET is one of the promising alternatives as it offers better immunity towards SCEs and can be scaled to the shortest channel length. In future, ICs can be designed using DG-CMOS technology for which mathematical models depicting the electrical characteristics of the DG MOSFETs are foremost needed. In this paper, a review on n-type symmetric DG MOSFETs models has been presented based on the analyses of electrostatic potential distribution, threshold voltage, and drain-current models. Mathematical derivations of the device models are described elaborately, and numerical simulations are also carried out to validate the replicability of models.



Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 927
Author(s):  
Guoqing Yang ◽  
Junting Yu ◽  
Jincheng Zhang ◽  
Xiangyuan Liu ◽  
Qiang Chen

A large amount of data needs to be stored in integrated circuits when data are being processed. The integrated circuits contain a large amount of static random access memory (SRAM) due to its high level of integration and speed. SRAM units should be as small as possible to achieve higher storage density. In this work, the features of single cell upsets (SCUs) and multiple cell upsets (MCUs) in a full custom SRAM are tested for a 40 nm bulk CMOS technology node, and Ge (linear energy transfer (LET) = 37.3 MeV cm2/mg), Cl (LET = 13.1 MeV cm2/mg), Al (LET = 8.6 MeV cm2/mg), O (LET = 3.1 MeV cm2/mg), and Li (LET = 0.5 MeV cm2/mg) particles are used. The test results show that the total single cell upset events are 2,000,147, 1,124,269, 413,100, 311,311, and 47,815 under the irradiation of Ge, Cl, Al, O, and Li, respectively. Moreover, due to single event upset reversal mechanism, multiple cell upsets significantly decrease. The total multiple cell upset events are 10, 4, 0, 0, and 0 under the irradiation of Ge, Cl, Al, O, and Li, respectively. There are a lot of single cell upsets appearing under Ge, Cl, Al, O, and Li exposure. The number is increasing with increasing LET, which means that well contacts still need optimization in the full custom SRAM. Close spacing of well contacts or increasing contacts are the approaches used to drain the excess carriers quickly, and error detection and correction (EDAC) is used for SRAM technology. The features show that SCUs have become a major source of soft errors for the full custom SRAM. Combining close spacing of well contacts with error detection and correction (EDAC) and a well engineering scheme are used to reduce single cell upsets, although there are a few MCUs which are inevitable. Radiation hardened by design schemes needs to be further improved.



2017 ◽  
Vol 2 (2) ◽  
pp. 15-19 ◽  
Author(s):  
Md. Saud Al Faisal ◽  
Md. Rokib Hasan ◽  
Marwan Hossain ◽  
Mohammad Saiful Islam

GaN-based double gate metal-oxide semiconductor field-effect transistors (DG-MOSFETs) in sub-10 nm regime have been designed for the next generation logic applications. To rigorously evaluate the device performance, non-equilibrium Green’s function formalism are performed using SILVACO ATLAS. The device is turn on at gate voltage, VGS =1 V while it is going to off at VGS = 0 V. The ON-state and OFF-state drain currents are found as 12 mA/μm and ~10-8 A/μm, respectively at the drain voltage, VDS = 0.75 V. The sub-threshold slope (SS) and drain induced barrier lowering (DIBL) are ~69 mV/decade and ~43 mV/V, which are very compatible with the CMOS technology. To improve the figure of merits of the proposed device, source to gate (S-G) and gate to drain (G-D) distances are varied which is mentioned as underlap. The lengths are maintained equal for both sides of the gate. The SS and DIBL are decreased with increasing the underlap length (LUN). Though the source to drain resistance is increased for enhancing the channel length, the underlap architectures exhibit better performance due to reduced capacitive coupling between the contacts (S-G and G-D) which minimize the short channel effects. Therefore, the proposed GaN-based DG-MOSFETs as one of the excellent promising candidates to substitute currently used MOSFETs for future high speed applications.



Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 551
Author(s):  
Zhongjian Bian ◽  
Xiaofeng Hong ◽  
Yanan Guo ◽  
Lirida Naviner ◽  
Wei Ge ◽  
...  

Spintronic based embedded magnetic random access memory (eMRAM) is becoming a foundry validated solution for the next-generation nonvolatile memory applications. The hybrid complementary metal-oxide-semiconductor (CMOS)/magnetic tunnel junction (MTJ) integration has been selected as a proper candidate for energy harvesting, area-constraint and energy-efficiency Internet of Things (IoT) systems-on-chips. Multi-VDD (low supply voltage) techniques were adopted to minimize energy dissipation in MRAM, at the cost of reduced writing/sensing speed and margin. Meanwhile, yield can be severely affected due to variations in process parameters. In this work, we conduct a thorough analysis of MRAM sensing margin and yield. We propose a current-mode sensing amplifier (CSA) named 1D high-sensing 1D margin, high 1D speed and 1D stability (HMSS-SA) with reconfigured reference path and pre-charge transistor. Process-voltage-temperature (PVT) aware analysis is performed based on an MTJ compact model and an industrial 28 nm CMOS technology, explicitly considering low-voltage (0.7 V), low tunneling magnetoresistance (TMR) (50%) and high temperature (85 °C) scenario as the worst sensing case. A case study takes a brief look at sensing circuits, which is applied to in-memory bit-wise computing. Simulation results indicate that the proposed high-sensing margin, high speed and stability sensing-sensing amplifier (HMSS-SA) achieves remarkable performance up to 2.5 GHz sensing frequency. At 0.65 V supply voltage, it can achieve 1 GHz operation frequency with only 0.3% failure rate.



2014 ◽  
Vol 13 (02) ◽  
pp. 1450012 ◽  
Author(s):  
Manorama Chauhan ◽  
Ravindra Singh Kushwah ◽  
Pavan Shrivastava ◽  
Shyam Akashe

In the world of Integrated Circuits, complementary metal–oxide–semiconductor (CMOS) has lost its ability during scaling beyond 50 nm. Scaling causes severe short channel effects (SCEs) which are difficult to suppress. FinFET devices undertake to replace usual Metal Oxide Semiconductor Field Effect Transistor (MOSFETs) because of their better ability in controlling leakage and diminishing SCEs while delivering a strong drive current. In this paper, we present a relative examination of FinFET with the double gate MOSFET (DGMOSFET) and conventional bulk Si single gate MOSFET (SGMOSFET) by using Cadence Virtuoso simulation tool. Physics-based numerical two-dimensional simulation results for FinFET device, circuit power is presented, and classifying that FinFET technology is an ideal applicant for low power applications. Exclusive FinFET device features resulting from gate–gate coupling are conversed and efficiently exploited for optimal low leakage device design. Design trade-off for FinFET power and performance are suggested for low power and high performance applications. Whole power consumptions of static and dynamic circuits and latches for FinFET device, believing state dependency, show that leakage currents for FinFET circuits are reduced by a factor of over ~ 10X, compared to DGMOSFET and ~ 20X compared with SGMOSFET.



2019 ◽  
Vol 116 (11) ◽  
pp. 4843-4848 ◽  
Author(s):  
Jiawei Zhang ◽  
Joshua Wilson ◽  
Gregory Auton ◽  
Yiming Wang ◽  
Mingsheng Xu ◽  
...  

Despite being a fundamental electronic component for over 70 years, it is still possible to develop different transistor designs, including the addition of a diode-like Schottky source electrode to thin-film transistors. The discovery of a dependence of the source barrier height on the semiconductor thickness and derivation of an analytical theory allow us to propose a design rule to achieve extremely high voltage gain, one of the most important figures of merit for a transistor. Using an oxide semiconductor, an intrinsic gain of 29,000 was obtained, which is orders of magnitude higher than a conventional Si transistor. These same devices demonstrate almost total immunity to negative bias illumination temperature stress, the foremost bottleneck to using oxide semiconductors in major applications, such as display drivers. Furthermore, devices fabricated with channel lengths down to 360 nm display no obvious short-channel effects, another critical factor for high-density integrated circuits and display applications. Finally, although the channel material of conventional transistors must be a semiconductor, by demonstrating a high-performance transistor with a semimetal-like indium tin oxide channel, the range and versatility of materials have been significantly broadened.



Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1531 ◽  
Author(s):  
Chang Cai ◽  
Shuai Gao ◽  
Peixiong Zhao ◽  
Jian Yu ◽  
Kai Zhao ◽  
...  

Radiation effects can induce severe and diverse soft errors in digital circuits and systems. A Xilinx commercial 16 nm FinFET static random-access memory (SRAM)-based field-programmable gate array (FPGA) was selected to evaluate the radiation sensitivity and promote the space application of FinFET ultra large-scale integrated circuits (ULSI). Picosecond pulsed laser and high energy heavy ions were employed for irradiation. Before the tests, SRAM-based configure RAMs (CRAMs) were initialized and configured. The 100% embedded block RAMs (BRAMs) were utilized based on the Vivado implementation of the compiled hardware description language. No hard error was observed in both the laser and heavy-ion test. The thresholds for laser-induced single event upset (SEU) were ~3.5 nJ, and the SEU cross-sections were correlated positively to the laser’s energy. Multi-bit upsets were measured in heavy-ion and high-energy laser irradiation. Moreover, latch-up and functional interrupt phenomena were common, especially in the heavy-ion tests. The single event effect results for the 16 nm FinFET process were significant, and some radiation tolerance strategies were required in a radiation environment.



Circuit World ◽  
2019 ◽  
Vol 45 (4) ◽  
pp. 300-310
Author(s):  
Piyush Tankwal ◽  
Vikas Nehra ◽  
Sanjay Prajapati ◽  
Brajesh Kumar Kaushik

Purpose The purpose of this paper is to analyze and compare the characteristics of hybrid conventional complementary metal oxide semiconductor/magnetic tunnel junction (CMOS/MTJ) logic gates based on spin transfer torque (STT) and differential spin Hall effect (DSHE) magnetic random access memory (MRAM). Design/methodology/approach Spintronics technology can be used as an alternative to CMOS technology as it is having comparatively low power dissipation, non-volatility, high density and high endurance. MTJ is the basic spin based device that stores data in form of electron spin instead of charge. Two mechanisms, namely, STT and SHE, are used to switch the magnetization of MTJ. Findings It is observed that the power consumption in DSHE based logic gates is 95.6% less than the STT based gates. DSHE-based write circuit consumes only 5.28 fJ energy per bit. Originality/value This paper describes how the DSHE-MRAM is more effective for implementing logic circuits in comparison to STT-MRAM.



Sign in / Sign up

Export Citation Format

Share Document