scholarly journals The MLR COMPASS-like complex is required to regulate triglyceride depletion and stress response in the Drosophila fat body

2021 ◽  
Author(s):  
David J Ford ◽  
Claudia B Zraly ◽  
Jeffrey Ng ◽  
Andrew K Dingwall

MLR COMPASS-like complexes are highly conserved histone modifiers and enhancer regulators recruited by multiple transcription factors during differentiation and development, including lineage-determining factors, nuclear receptors, and developmental signaling pathway effectors. While the essential functions of MLR complexes during differentiation-associated transcriptional reprogramming has been well-explored, roles that these complexes play during reprogramming events in terminally differentiated cells remain understudied. We determined that the Drosophila MLR complex is required in fat body adipocytes for proper regulation of the triglyceride depletion rate during non-feeding periods, including metamorphosis and adult starvation. Transcriptome analysis revealed that the complex plays a critical role in controlling stress-related reprogramming in these cells, suggesting that the metabolic phenotypes are indirect effects of dysregulated stress transcription. Furthermore, our evidence suggests that the complex interacts with Foxo and Relish (Nf-κb) pathways and is required for proper expression of their targets. This investigation further elucidates the necessary functions of MLR complexes in regulating transcriptional reprogramming in terminally differentiated cells as well as suggests novel binding partners. Apparent roles for these complexes in the proper regulation of stress-induced transcription implies new mechanisms involved in cancer and other human diseases associated with MLR subunit mutation.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guilhem Reyt ◽  
Priya Ramakrishna ◽  
Isai Salas-González ◽  
Satoshi Fujita ◽  
Ashley Love ◽  
...  

AbstractLignin is a complex polymer deposited in the cell wall of specialised plant cells, where it provides essential cellular functions. Plants coordinate timing, location, abundance and composition of lignin deposition in response to endogenous and exogenous cues. In roots, a fine band of lignin, the Casparian strip encircles endodermal cells. This forms an extracellular barrier to solutes and water and plays a critical role in maintaining nutrient homeostasis. A signalling pathway senses the integrity of this diffusion barrier and can induce over-lignification to compensate for barrier defects. Here, we report that activation of this endodermal sensing mechanism triggers a transcriptional reprogramming strongly inducing the phenylpropanoid pathway and immune signaling. This leads to deposition of compensatory lignin that is chemically distinct from Casparian strip lignin. We also report that a complete loss of endodermal lignification drastically impacts mineral nutrients homeostasis and plant growth.


2014 ◽  
Vol 67 (8) ◽  
pp. 656-660 ◽  
Author(s):  
Sumit Sahni ◽  
Angelica M Merlot ◽  
Sukriti Krishan ◽  
Patric J Jansson ◽  
Des R Richardson

The BECN1 gene encodes the Beclin-1 protein, which is a well-established regulator of the autophagic pathway. It is a mammalian orthologue of the ATG6 gene in yeast and was one of the first identified mammalian autophagy-associated genes. Beclin-1 interacts with a number of binding partners in the cell which can lead to either activation (eg, via PI3KC3/Vps34, Ambra 1, UV radiation resistance-associated gene) or inhibition (eg, via Bcl-2, Rubicon) of the autophagic pathway. Apart from its role as a regulator of autophagy, it is also shown to effect important biological processes in the cell such as apoptosis and embryogenesis. Beclin-1 has also been implicated to play a critical role in the pathology of a variety of disease states including cancer, neurological disorders (eg, Alzheimer's disease, Parkinson's disease) and viral infections. Thus, understanding the functions of Beclin-1 and its interactions with other cellular components will aid in its development as an important therapeutic target for future drug development.


2017 ◽  
Vol 114 (38) ◽  
pp. E8017-E8024 ◽  
Author(s):  
Lin Ling ◽  
Vladimir A. Kokoza ◽  
Changyu Zhang ◽  
Emre Aksoy ◽  
Alexander S. Raikhel

Hematophagous female mosquitoes transmit numerous devastating human diseases, including malaria, dengue fever, Zika virus, and others. Because of their obligatory requirement of a vertebrate blood meal for reproduction, these mosquitoes need a lot of energy; therefore, understanding the molecular mechanisms linking metabolism and reproduction is of particular importance. Lipids are the major energy store providing the fuel required for host seeking and reproduction. They are essential components of the fat body, a metabolic tissue that is the insect analog of vertebrate liver and adipose tissue. In this study, we found that microRNA-277 (miR-277) plays an important role in regulating mosquito lipid metabolism. The genetic disruption of miR-277 using the CRISPR-Cas9 system led to failures in both lipid storage and ovary development. miR-277 mimic injection partially rescued these phenotypic manifestations. Examination of subcellular localization of FOXO protein via CRISPR-assisted, single-stranded oligodeoxynucleotide-mediated homology-directed repair revealed that insulin signaling is up-regulated in response to miR-277 depletion. In silico target prediction identified that insulin-like peptides 7 and 8 (ilp7andilp8) are putative targets of miR-277; RNA immunoprecipitation and a luciferase reporter assay confirmed thatilp7andilp8are direct targets of this miRNA. CRISPR-Cas9 depletion ofilp7andilp8led to metabolic and reproductive defects. These depletions identified differential actions of ILP7 and ILP8 in lipid homeostasis and ovarian development. Thus, miR-277 plays a critical role in mosquito lipid metabolism and reproduction by targetingilp7andilp8, and serves as a monitor to control ILP7 and ILP8 mRNA levels.


2018 ◽  
Vol 19 (12) ◽  
pp. 3810 ◽  
Author(s):  
Ting Lian ◽  
Qi Wu ◽  
Brian Hodge ◽  
Kenneth Wilson ◽  
Guixiang Yu ◽  
...  

Aging is often defined as the accumulation of damage at the molecular and cellular levels which, over time, results in marked physiological impairments throughout the organism. Dietary restriction (DR) has been recognized as one of the strongest lifespan extending therapies observed in a wide array of organisms. Recent studies aimed at elucidating how DR promotes healthy aging have demonstrated a vital role of the digestive tract in mediating the beneficial effects of DR. Here, we review how dietary restriction influences gut metabolic homeostasis and immune function. Our discussion is focused on studies of the Drosophila digestive tract, where we describe in detail the potential mechanisms in which DR enhances maintenance of the intestinal epithelial barrier, up-regulates lipid metabolic processes, and improves the ability of the gut to deal with damage or stress. We also examine evidence of a tissue-tissue crosstalk between gut and neighboring organs including brain and fat body. Taken together, we argue that the Drosophila gut plays a critical role in DR-mediated lifespan extension.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1075
Author(s):  
Fabiana Lanzillo ◽  
Giacomo Ruggiero ◽  
Francesca Raganati ◽  
Maria Elena Russo ◽  
Antonio Marzocchella

Syngas (CO, CO2, and H2) has attracted special attention due to the double benefit of syngas fermentation for carbon sequestration (pollution reduction), while generating energy. Syngas can be either produced by gasification of biomasses or as a by-product of industrial processes. Only few microorganisms, mainly clostridia, were identified as capable of using syngas as a substrate to produce medium chain acids, or alcohols (such as butyric acid, butanol, hexanoic acid, and hexanol). Since CO plays a critical role in the availability of reducing equivalents and carbon conversion, this work assessed the effects of constant CO partial pressure (PCO), ranging from 0.5 to 2.5 atm, on cell growth, acid production, and solvent production, using Clostridium carboxidivorans. Moreover, this work focused on the effect of the liquid to gas volume ratio (VL/VG) on fermentation performances; in particular, two VL/VG were considered (0.28 and 0.92). The main results included—(a) PCO affected the growth kinetics of the microorganism; indeed, C. carboxidivorans growth rate was characterized by CO inhibition within the investigated range of CO concentration, and the optimal PCO was 1.1 atm (corresponding to a dissolved CO concentration of about 25 mg/L) for both VL/VG used; (b) growth differences were observed when the gas-to-liquid volume ratio changed; mass transport phenomena did not control the CO uptake for VL/VG = 0.28; on the contrary, the experimental CO depletion rate was about equal to the transport rate in the case of VL/VG = 0.92.


2021 ◽  
Author(s):  
Lindy Jensen ◽  
Zsolt G. Venkei ◽  
George J. Watase ◽  
Bitarka Bisai ◽  
Scott Pletcher ◽  
...  

Tissue-specific stem cells maintain tissue homeostasis by providing a continuous supply of differentiated cells throughout the life of organisms. Differentiated/differentiating cells can revert back to a stem cell identity via dedifferentiation to help maintain the stem cell pool beyond the lifetime of individual stem cells. Although dedifferentiation is important to maintain the stem cell population, it is speculated to underlie tumorigenesis. Therefore, this process must be tightly controlled. Here we show that a translational regulator me31B plays a critical role in preventing excess dedifferentiation in the Drosophila male germline: in the absence of me31B, spermatogonia (SGs) dedifferentiate into germline stem cells (GSCs) at a dramatically elevated frequency. Our results show that the excess dedifferentiation is likely due to misregulation of nos, a key regulator of germ cell identity and GSC maintenance. Taken together, our data reveal negative regulation of dedifferentiation to balance stem cell maintenance with differentiation.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi174-vi175
Author(s):  
David Tran ◽  
Son Le ◽  
Bo Ma ◽  
Darin Falk ◽  
Serge Zolotukhin

Abstract BACKGROUND Profound heterogeneity has severely hampered therapeutic advancements in GBM. Remarkably, however, GBM exhibits broad clinical and histopathologic overlaps suggesting the presence of a common state. The GBM state embodies network restructuring forced by founding mutations and perpetuated in subclones of GBM stem-like cells (GSCs). Successful targeting of the GBM state promises to circumvent the heterogeneity. METHODS To decipher the GBM state, we applied NETZEN, an AI suite integrating a deep neural network with gene network-based ranking, to first generate the reference GBM gene network from TCGA’s entire GBM RNAseq collection, and then identify the altered master regulatory gene subnetwork in GBM using a dataset containing >30 diverse patient-derived GSC lines and their paired differentiated cells, 6 astrocyte and 3 neuronal precursor cell lines. To develop a gene therapy against the GBM state, we screened a rAAV capsid library through GBM patient-derived xenografts (PDX) to identify variants with specific tropism for GBM cells that can deliver targeting constructs intratumorally. RESULTS We discovered a putative GBM state anchored by developmentally restricted master regulators. To validate its critical role, we deconstructed it using shRNA in a panel of PDX and uniformly observed improved tumor control and survival compared to controls (p< 0.05 in all lines). More notably, when the core GBM state was forcibly reconstructed in astrocytes, transformation into GSC-like cells occurred, as measured by single-cell analysis, neurosphere formation, and most importantly, development of lethal infiltrating brain tumors in 15/15 mice. Finally, selected novel rAAV capsids with 10-40-fold higher specificity for GBM cells were utilized in a shRNA-based rAAV platform to target key master regulators of the validated GBM state. CONCLUSIONS The GBM state is established by a developmental master regulator subnetwork permitting the creation of a first-of-its-kind, heterogeneity-agnostic GBM therapy. This AI-directed R&D program can be expanded to target other tumors.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Sahana Suresh Babu ◽  
Johnson Rajasingh ◽  
Wing Tak Wong ◽  
Prasanna Krishnamurthy

Background: The Hu family of RNA-binding proteins, HuR (also known as ELAVL1 or human embryonic lethal abnormal vision-like protein), binds to the 3’-untranslated region of mRNAs and regulates transcript stability and translation. Global deletion of HuR is embryonically lethal in mice and plays a critical role in progenitor cell survival and biology. Induced-pluripotent stem cells (iPSC) have distinct transcriptional machinery for the maintenance of pluripotency and achievement of differentiation. However, the exact role of HuR in pluripotency or differentiation of iPSC to cardiomyocytes (iCM) remains unclear. Methods: HuR knockdown in human dermal fibroblast-derived iPSCs was achieved by CRISPR/Cas9 or lentiviral shRNA transduction and subsequently differentiated into cardiomyocytes (iCM). Then, the expression of HuR, pluripotency and cardiomyocyte markers were evaluated on days 0, 1, 3, 6, 8 and 17 following the initiation of differentiation. Results: At basal level, HuR expression was higher in the iPSCs compared to dermal fibroblasts. Upon differentiation of iPSCs into iCM, HuR mRNA expression gradually reduced with significantly lower levels on day 17. As expected, pluripotency markers gradually reduced upon differentiation with significantly lower levels from day 6 onwards. We observed a corresponding increase in ISL1, MESP1 (mesoderm/cardiac progenitor markers) from day 3 through day 8 with a steep fall from day 8 to day 17. This was associated with Myosin light chain-2V and GATA4 expression increases from day 8 through day 17. Interestingly, knockdown of HuR resulted in clumps of colonies with differentiated cells and a corresponding increase in cardiac-troponin positive cells. However, as a general observation, HuR knockdown reduced beating intensity compared to wild type cells. Conclusions: Based on these data, we could speculate that HuR might be necessary for maintenance of pluripotency and loss of which renders cells to differentiate in culture. HuR knockdown yields higher number of c-troponin positive cells but its effect on functional maturity of iCM needs to be further evaluated.


2005 ◽  
Vol 288 (5) ◽  
pp. G933-G942 ◽  
Author(s):  
Rabii Ameziane El Hassani ◽  
Nesrine Benfares ◽  
Bernard Caillou ◽  
Monique Talbot ◽  
Jean-Christophe Sabourin ◽  
...  

The dual oxidase (Duox)2 flavoprotein is strongly expressed in the thyroid gland, where it plays a critical role in the synthesis of thyroid hormones by providing thyroperoxidase with H2O2. DUOX2 mRNA was recently detected by RT-PCR and in-situ hybridization experiments in other tissues, such as rat colon and rat and human epithelial cells from the salivary excretory ducts and rectal glands. We examined Duox2 expression at the protein level throughout the porcine digestive tract and in human colon. Western blot analysis identified Duox2 as the same two molecular species ( Mr 165 and 175 kDa) as detected in the thyroid. It was expressed in all the tissues tested, but the highest levels were found in the cecum and sigmoidal colon. Immunohistochemical studies showed that Duox2 protein is mainly present in these parts of the gut and located at the apical membrane of the enterocytes in the brush border, indicating that it is expressed only in highly differentiated cells. A Ca2+/NADPH-dependent H2O2-generating system was associated with Duox2 protein expression, which had the same biochemical characteristics as the NADPH oxidase in the thyroid. Indeed, treatment of the thyroid and cecum particulate fractions with phenylarsine oxide resulted in complete calcium desensitization of both enzymes. A marked increase in DUOX2 expression was also found during spontaneous differentiation of postconfluent Caco-2 cells. The discovery of Duox2 as a novel source of H2O2 in the digestive tract, particularly in the cecum and colon, makes it a new candidate mediator of physiopathological processes.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Maria Paula Zappia ◽  
Ana Guarner ◽  
Nadia Kellie-Smith ◽  
Alice Rogers ◽  
Robert Morris ◽  
...  

The E2F transcription factors play a critical role in controlling cell fate. In Drosophila, the inactivation of E2F in either muscle or fat body results in lethality, suggesting an essential function for E2F in these tissues. However, the cellular and organismal consequences of inactivating E2F in these tissues are not fully understood. Here, we show that the E2F loss exerts both tissue-intrinsic and systemic effects. The proteomic profiling of E2F-deficient muscle and fat body revealed that E2F regulates carbohydrate metabolism, a conclusion further supported by metabolomic profiling. Intriguingly, animals with E2F-deficient fat body had a lower level of circulating trehalose and reduced storage of fat. Strikingly, a sugar supplement was sufficient to restore both trehalose and fat levels, and subsequently, rescued animal lethality. Collectively, our data highlight the unexpected complexity of E2F mutant phenotype, which is a result of combining both tissue-specific and systemic changes that contribute to animal development.


Sign in / Sign up

Export Citation Format

Share Document