scholarly journals A Literature-Based Update on Benincasa hispida (Thunb.) Cogn.: Traditional Uses, Nutraceutical, and Phytopharmacological Profiles

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Muhammad Torequl Islam ◽  
Cristina Quispe ◽  
Dina M. El-Kersh ◽  
Manik Chandra Shill ◽  
Kanchan Bhardwaj ◽  
...  

Benincasa hispida (Thunb.) Cogn. (Cucurbitaceae) is an annual climbing plant, native to Asia with multiple therapeutic uses in traditional medicine. This updated review is aimed at discussing the ethnopharmacological, phytochemical, pharmacological properties, and molecular mechanisms highlighted in preclinical experimental studies and toxicological safety to evaluate the therapeutic potential of this genus. The literature from PubMed, Google Scholar, Elsevier, Springer, Science Direct, and database was analyzed using the basic keyword “Benincasa hispida.” Other searching strategies, including online resources, books, and journals, were used. The taxonomy of the plant has been made by consulting “The Plant List”. The results showed that B. hispida has been used in traditional medicine to treat neurological diseases, kidney disease, fever, and cough accompanied by thick mucus and to fight intestinal worms. The main bioactive compounds contained in Benincasa hispida have cytotoxic, anti-inflammatory, and anticancer properties. Further safety and efficacy investigations are needed to confirm these beneficial therapeutic effects and also future human clinical studies.

Author(s):  
Bahareh Sadat Yousefsani ◽  
Motahareh Boozari ◽  
Kobra Shirani ◽  
Amirhossein Jamshidi ◽  
Majid Dadmehr

Abstract Objectives Iris germanica L. is a medicinal plant, which has a long history of uses, mainly in medieval Persia and many places worldwide for the management of a wide variety of diseases. In this study, we aimed to review ethnopharmacological applications in addition to phytochemical and pharmacological properties of I. germanica. Key findings Ethnomedical uses of I. germanica have been reported from many countries such as China, Pakistan, India, Iran and Turkey. The medicinal part of I. germanica is the rhizome and the roots. Based on phytochemical investigations, different bioactive compounds, including flavonoids, triterpenes, sterols, phenolics, ceramides and benzoquinones, have been identified in its medicinal parts. Current pharmacological studies represent that the plant possesses several biological and therapeutic effects, including neuroprotective, hypoglycaemic, hypolipidaemic, antimicrobial, antioxidant, antiproliferative, anti-inflammatory, antiplasmodial, antifungal, immunomodulatory, cytotoxic and antimutagenic effects. Summary Although the majority of preclinical studies reported various pharmacological activities of this plant, however, sufficient clinical trials are not currently available. Therefore, to draw a definitive conclusion about the efficacy and therapeutic activities of I. germanica and its bioactive compounds, further clinical and experimental studies are required. Moreover, it is necessary to focus on the pharmacokinetic and safety studies on the extracts of I. germanica.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
S. L. A. Gunawardana ◽  
W. J. A. B. N. Jayasuriya

Background. The plant kingdom is rich with a numerous number of plants with various medical properties which can be used to treat various medical issues. Sri Lanka is a country full of biodiversity which is gifted with many plant resources. It has a rich history of traditional medicine systems consisting of Ayurveda, Unani, and Deshiya Chikitsa, where these plant resources are used as remedies for the diseases. In the traditional medicine system, various plant parts such as leaves, roots, fruits, flowers, and bark are used to treat disease conditions. Although less attention is paid to the medicinal importance of the flowers, some of them have been used to treat many diseases from the ancient time. Some properties of the flowers may differ from the properties of the other plant parts. For example, Sesbania grandiflora (Katuru murunga) flowers have shown anticancer properties against various cell models whereas some flowers have shown antispermatogenic properties. Flowers of Woodfordia floribunda (Militta) are added as fermenting agents in the preparation of Arishtas in Ayurveda. Also the most popular Clove oil is obtained from the flower buds of Syzygium aromaticum (Karabu-neti) which is used to treat toothaches since it has antibiotic and antiseptic properties. This article gives an overview of herbal flowers used in the traditional medicine system of Sri Lanka and their pharmacological importance. Method. A comprehensive literature survey was done on the medicinally important flowers in Sri Lanka. Data was collected from Libraries of Ayurveda in Sri Lanka and from scientific databases. Results. According to the survey many flowers are used as astringent, cardiac tonic, and febrifuge. Also some flowers are used to treat dysentery, diarrhoea, and indigestion. Some flowers are useful in the treatment of bleeding piles while some are useful in the treatment of asthma and bronchitis. Conclusion. It was revealed that there are many flowers with valuable therapeutic effects. Traditional medicine systems prevailing in Sri Lanka have made use of these flowers with therapeutic effects to cure so many diseases. The review of medicinally important herbal flowers provides knowledge and pharmacological leads which will help for the wellbeing of the human beings. Although there are phytochemical studies done to identify the chemical compounds on some flowers, chemical composition of many flowers remains unrevealed. So further studies need to be done to identify the chemical composition of these flowers.


Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1605 ◽  
Author(s):  
Carl Randall Harrell ◽  
Nemanja Jovicic ◽  
Valentin Djonov ◽  
Nebojsa Arsenijevic ◽  
Vladislav Volarevic

There is growing evidence that mesenchymal stem cell (MSC)-based immunosuppression was mainly attributed to the effects of MSC-derived extracellular vesicles (MSC-EVs). MSC-EVs are enriched with MSC-sourced bioactive molecules (messenger RNA (mRNA), microRNAs (miRNAs), cytokines, chemokines, immunomodulatory factors) that regulate phenotype, function and homing of immune cells. In this review article we emphasized current knowledge regarding molecular mechanisms responsible for the therapeutic effects of MSC-EVs in attenuation of autoimmune and inflammatory diseases. We described the disease-specific cellular targets of MSC-EVs and defined MSC-sourced molecules, which were responsible for MSC-EV-based immunosuppression. Results obtained in a large number of experimental studies revealed that both local and systemic administration of MSC-EVs efficiently suppressed detrimental immune response in inflamed tissues and promoted survival and regeneration of injured parenchymal cells. MSC-EVs-based anti-inflammatory effects were relied on the delivery of immunoregulatory miRNAs and immunomodulatory proteins in inflammatory immune cells (M1 macrophages, dendritic cells (DCs), CD4+Th1 and Th17 cells), enabling their phenotypic conversion into immunosuppressive M2 macrophages, tolerogenic DCs and T regulatory cells. Additionally, through the delivery of mRNAs and miRNAs, MSC-EVs activated autophagy and/or inhibited apoptosis, necrosis and oxidative stress in injured hepatocytes, neurons, retinal cells, lung, gut and renal epithelial cells, promoting their survival and regeneration.


2020 ◽  
Vol 27 (6) ◽  
pp. 983-996 ◽  
Author(s):  
Md. Asaduzzaman Khan ◽  
Mousumi Tania

Background: Cordycepin is a nucleotide analogue from Cordyceps mushrooms, which occupies a notable place in traditional medicine. Objective: In this review article, we have discussed the recent findings on the molecular aspects of cordycepin interactions with its recognized cellular targets, and possible mechanisms of its anticancer activity. Methods: We have explored databases like pubmed, google scholar, scopus and web of science for the update information on cordycepin and mechanisms of its anticancer activity, and reviewed in this study. Results: Cordycepin has been widely recognized for its therapeutic potential against many types of cancers by various mechanisms. More specifically, cordycepin can induce apoptosis, resist cell cycle and cause DNA damage in cancer cells, and thus kill or control cancer cell growth. Also cordycepin can induce autophagy and modulate immune system. Furthermore, cordycepin also inhibits tumor metastasis. Although many success stories of cordycepin in anticancer research in vitro and in animal model, and there is no successful clinical trial yet. Conclusion: Ongoing research studies have reported highly potential anticancer activities of cordycepin with numerous molecular mechanisms. The in vitro and in vivo success of cordycepin in anticancer research might influence the clinical trials of cordycepin, and this molecule might be used for development of future cancer drug.


2019 ◽  
Vol 25 (11) ◽  
pp. 1210-1235 ◽  
Author(s):  
Soraya Sajadimajd ◽  
Saeideh Momtaz ◽  
Pouya Haratipour ◽  
Fardous F. El-Senduny ◽  
Amin Iran Panah ◽  
...  

Background: Algal polysaccharide and oligosaccharide derivatives have been shown to possess a variety of therapeutic potentials and drug delivery applications. Algal polysaccharides contain sulfated sugar monomers derived from seaweed including brown, red, and green microalgae. Here, in this review, the recent progress of algal polysaccharides’ therapeutic applications as anticancer agents, as well as underlying cellular and molecular mechanisms was investigated. Moreover, recent progress in the structural chemistry of important polysaccharides with anticancer activities were illustrated. Methods: Electronic databases including “Scopus”, “PubMed”, and “Cochrane library” were searched using the keywords “cancer”, or “tumor”, or “malignancy” in title/abstract, along with “algae”, or “algal” in the whole text until July 2018. Only English language papers were included. Results: The most common polysaccharides involved in cancer management were sulfated polysaccharides, Fucoidans, Carageenans, and Ulvan from different species of algae that have been recognized in vitro and in vivo. The underlying anticancer mechanisms of algal polysaccharides included induction of apoptosis, cell cycle arrest, modulation of transduction signaling pathways, suppression of migration and angiogenesis, as well as activation of immune responses and antioxidant system. VEGF/VEGFR2, TGFR/Smad/Snail, TLR4/ROS/ER, CXCL12/ CXCR4, TGFR/Smad7/Smurf2, PI3K/AKT/mTOR, PBK/TOPK, and β-catenin/Wnt are among the main cellular signaling pathways which have a key role in the preventive and therapeutic effects of algal polysaccharides against oncogenesis. Conclusion: Algal polysaccharides play a crucial role in the management of cancer and may be considered the next frontier in pharmaceutical research. Further well-designed clinical trials are mandatory to evaluate the efficacy and safety of algal polysaccharides in patients with cancer.


Author(s):  
KAMRAN ASHRAF

Nowadays, the use of medicinal plants increased significantly for the aim of producing more effective drugs with fewer side effects. Gynura procumbens (family Asteraceae) is a high value medicinal plant with different properties that are considered less, regardless of having great therapeutic potential in traditional medicine. Many pharmacological studies have established the ability of this plant to exhibit antimicrobial, antioxidant, hepatoprotection, antigenotoxic, antiplasmodial, cytotoxic, cardioactive, antidiabetic, anti-inflammatory, etc. The aim of this study was to review the updated phytochemical, pharmacological investigations as well as the traditional and therapeutic uses of G. procumbens. Important and different experimental data have been addressed along with a review of most of the phytochemicals identified in this plant.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 536 ◽  
Author(s):  
Rajendran Jeyasri ◽  
Pandiyan Muthuramalingam ◽  
Vellaichami Suba ◽  
Manikandan Ramesh ◽  
Jen-Tsung Chen

Neurological diseases (NDs), especially Alzheimer’s and Spinocerebellar ataxia (SCA), can severely cause biochemical abnormalities in the brain, spinal cord and other nerves of human beings. Their ever-increasing prevalence has led to a demand for new drug development. Indian traditional and Ayurvedic medicine used to combat the complex diseases from a holistic and integrative point of view has shown efficiency and effectiveness in the treatment of NDs. Bacopa monnieri is a potent Indian medicinal herb used for multiple ailments, but is significantly known as a nootropic or brain tonic and memory enhancer. This annual herb has various active compounds and acts as an alternative and complementary medicine in various countries. However, system-level insights of the molecular mechanism of a multiscale treatment strategy for NDs is still a bottleneck. Considering its prominence, we used cheminformatics and system pharmacological approaches, with the aim to unravel the various molecular mechanisms represented by Bacopa-derived compounds in identifying the active human targets when treating NDs. First, using cheminformatics analysis combined with the drug target mining process, 52 active compounds and their corresponding 780 direct receptors were retrieved and computationally validated. Based on the molecular properties, bioactive scores and comparative analysis with commercially available drugs, novel and active compounds such as asiatic acid (ASTA) and loliolide (LLD) to treat the Alzheimer’s and SCA were identified. According to the interactions among the active compounds, the targets and diseases were further analyzed to decipher the deeper pharmacological actions of the drug. NDs consist of complex regulatory modules that are integrated to dissect the therapeutic effects of compounds derived from Bacopa in various pathological features and their encoding biological processes. All these revealed that Bacopa compounds have several curative activities in regulating the various biological processes of NDs and also pave the way for the treatment of various diseases in modern medicine.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Md Shahinozzaman ◽  
Moutushi Islam ◽  
Bristy Basak ◽  
Arifa Sultana ◽  
Rashiduzzaman Emran ◽  
...  

Abstract Lambertianic acid (LA) is a diterpene bioactive compound mainly purified from different species of Pinus. It is an optical isomer of another natural compound daniellic acid and was firstly purified from Pinus lambertiana. LA can be synthesized in laboratory from podocarpic acid. It has been reported to have potential health benefits in attenuating obesity, allergies and different cancers including breast, liver, lung and prostate cancer. It exhibits anticancer properties through inhibiting cancer cell proliferation and survival, and inducing apoptosis, targeting major signalling components including AKT, AMPK, NFkB, COX-2, STAT3, etc. Most of the studies with LA were done using in vitro models, thus warranting future investigations with animal models to evaluate its pharmacological effects such as antidiabetic, anti-inflammatory and neuroprotective effects as well as to explore the underlying molecular mechanisms and toxicological profile. This review describes the chemistry, source, purification and therapeutic potentials of LA and it can therefore be a suitable guideline for any future study with LA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Niraj Kumar Jha ◽  
Charu Sharma ◽  
Hebaallah Mamdouh Hashiesh ◽  
Seenipandi Arunachalam ◽  
MF Nagoor Meeran ◽  
...  

Coronavirus disease (COVID-19), caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing pandemic and presents a public health emergency. It has affected millions of people and continues to affect more, despite tremendous social preventive measures. Identifying candidate drugs for the prevention and treatment of COVID-19 is crucial. The pathogenesis and the complications with advanced infection mainly involve an immune-inflammatory cascade. Therefore, therapeutic strategy relies on suppressing infectivity and inflammation, along with immune modulation. One of the most promising therapeutic targets for the modulation of immune-inflammatory responses is the endocannabinoid system, particularly the activation of cannabinoid type 2 receptors (CB2R), a G-protein coupled receptor which mediates the anti-inflammatory properties by modulating numerous signaling pathways. To pharmacologically activate the CB2 receptors, a naturally occurring cannabinoid ligand, beta-caryophyllene (BCP), received attention due to its potent anti-inflammatory, antiviral, and immunomodulatory properties. BCP is recognized as a full selective functional agonist on CB2 receptors and produces therapeutic effects by activating CB2 and the nuclear receptors, peroxisome proliferator-activated receptors (PPARs). BCP is regarded as the first dietary cannabinoid with abundant presence across cannabis and non-cannabis plants, including spices and other edible plants. BCP showed tissue protective properties and favorably modulates numerous signaling pathways and inhibits inflammatory mediators, including cytokines, chemokines, adhesion molecules, prostanoids, and eicosanoids. Based on its pharmacological properties, molecular mechanisms, and the therapeutic potential of BCP as an immunomodulator, anti-inflammatory, organ-protective, and antiviral, we hypothesize that BCP could be a promising therapeutic and/or preventive candidate to target the triad of infection, immunity, and inflammation in COVID-19. In line with numerous studies that proposed the potential of cannabinoids in COVID-19, BCP may be a novel candidate compound for pharmaceutical and nutraceutical development due to its unique functional receptor selectivity, wide availability and accessibility, dietary bioavailability, nonpsychoactivity, and negligible toxicity along with druggable properties, including favorable pharmacokinetic and physicochemical properties. Based on reasonable pharmacological mechanisms and therapeutic properties, we speculate that BCP has potential to be investigated against COVID-19 and will inspire further preclinical and clinical studies.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4502
Author(s):  
Seog Young Kang ◽  
Dongwon Hwang ◽  
Soyoung Shin ◽  
Jinju Park ◽  
Myoungchan Kim ◽  
...  

Gastric cancer, also known as stomach cancer, is a cancer that develops from the lining of the stomach. Accumulated evidence and epidemiological studies have indicated that bioactive food components from natural products play an important role in gastric cancer prevention and treatment, although its mechanism of action has not yet been elucidated. Particularly, experimental studies have shown that natural bioactive food products display a protective effect against gastric cancer via numerous molecular mechanisms, such as suppression of cell metastasis, anti-angiogenesis, inhibition of cell proliferation, induction of apoptosis, and modulation of autophagy. Chemotherapy remains the standard treatment for advanced gastric cancer along with surgery, radiation therapy, hormone therapy, as well as immunotherapy, and its adverse side effects including neutropenia, stomatitis, mucositis, diarrhea, nausea, and emesis are well documented. However, administration of naturally occurring bioactive phytochemical food components could increase the efficacy of gastric chemotherapy and other chemotherapeutic resistance. Additionally, several studies have suggested that bioactive food components with structural stability, potential bioavailability, and powerful bioactivity are important to develop novel treatment strategies for gastric cancer management, which may minimize the adverse effects. Therefore, the purpose of this review is to summarize the potential therapeutic effects of natural bioactive food products on the prevention and treatment of gastric cancer with intensive molecular mechanisms of action, bioavailability, and safety efficacy.


Sign in / Sign up

Export Citation Format

Share Document