Extraction and characterisation of bioactive proteins from Pongamia pinnata and their conversion into bioproducts for food packaging applications

2021 ◽  
pp. 088391152110432
Author(s):  
Divya Nataraj ◽  
Vijaykumar Guna ◽  
Prajwal Battampara ◽  
Nagananda Govinahalli Shivashankara ◽  
Paola Rizzarelli ◽  
...  

In this research, proteins were obtained from Pongamia pinnata oil meal and subsequently converted into films and compression molded into various packaging products. Films with a maximum tensile strength of 1.9 MPa were obtained when 15% citric acid was used as the crosslinker. Minimum swelling of 120% was seen in 20% citric acid crosslinked film whereas the uncrosslinked films readily disintegrated in water. The protein films had excellent antioxidant properties with an IC50 value of 14.6 µg/ml compared to 26.9 µg/ml for the standard ascorbic acid. The pongamia protein-based bioproducts showed good activity against Bacillus cereus and Aspergillus niger. Unique properties, low cost, and large availability make pongamia proteins an ideal biopolymer for the development of green and sustainable materials and bioproducts.

Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 366 ◽  
Author(s):  
Wirongrong Tongdeesoontorn ◽  
Lisa J. Mauer ◽  
Sasitorn Wongruong ◽  
Pensiri Sriburi ◽  
Pornchai Rachtanapun

Antioxidant integration has been advocated for in polymer films, to exert their antioxidative effects in active packaging. In this study, the new antioxidant food packaging made from cassava starch–carboxymethyl cellulose (CMC), which is biodegradable, edible and inexpensive, was developed. Their properties were determined and applied in food models for application. Antioxidants (quercetin and tertiary butylhydroquinone (TBHQ)) were added at various concentrations into cassava starch–carboxymethyl cellulose (CMC) (7:3 w/w) films containing glycerol (30 g/100 g starch–CMC) as a plasticizer. The effects of quercetin and TBHQ concentrations on the mechanical properties, solubility, antioxidative activity, and applications of the films were investigated. Addition of antioxidant improved tensile strength, but reduced elongation at break of the cassava starch–CMC film. Cassava starch–CMC films containing quercetin showed higher tensile strength, but lower elongation at break, compared to films with TBHQ. Increases in quercetin and TBHQ content decreased water solubility in the films. Both the total phenolic content and antioxidative activity (DPPH scavenging assay) still remained in films during storage time (30 days). In application, cassava starch–CMC film containing quercetin and TBHQ can retard the oxidation of lard (35–70 days) and delay the discoloration of pork.


2021 ◽  
Author(s):  
Zahra Ghasempour ◽  
Sepideh Khodaivandi ◽  
Hossein Ahangari ◽  
Hamed Hamishehkar ◽  
Sajed Amjadi ◽  
...  

Abstract In this study, composite packaging films were produced from relatively inexpensive materials including whey protein isolate (WPI) and Persian gum (PG), supplemented with betanin nanoliposomes (NLPs). Using response surface methodology (central composite design), we investigated the effects of two variables (PG [0–2% w/v] and betanin NLPs’ [0–10% w/v] content) on the physico-mechanical and antioxidant properties of the film treatments. Afterward, the optimal treatment was evaluated for structural and antimicrobial characteristics. The film samples' permeability to water vapor decreased with the addition of NLP (from 7.38 to 5.46 g/Pa.s.m) but increased with PG incorporation; decreased solubility was observed when either substance was added. Mechanical properties like Young’s modulus and tensile strength were weakened by PG addition, but the incorporation of NLPs led to pronounced tensile strength. XRD analysis revealed improved crystallinity through NLPs’ addition. The presence of NLPs in the nanocomposite film resulted in an elevated level of antibacterial activity against Staphylococcus aureus, while the addition of both PG and betanin NLPs led to improved antioxidative activity (63.45%). Considering the results, PG/WPI films loaded with betanin NLPs could be introduced in active packaging applications for the shelf life extension of perishable food products.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (2) ◽  
pp. 17-25
Author(s):  
JUNMING SHU ◽  
ARTHAS YANG ◽  
PEKKA SALMINEN ◽  
HENRI VAITTINEN

The Ji’an PM No. 3 is the first linerboard machine in China to use multilayer curtain coating technology. Since successful startup at the end of 2011, further development has been carried out to optimize running conditions, coating formulations, and the base paper to provide a product with satisfactory quality and lower cost to manufacture. The key challenges include designing the base board structure for the desired mechanical strength, designing the surface properties for subsequent coating operations, optimizing the high-speed running of the curtain coater to enhance production efficiency, minimizing the amount of titanium dioxide in the coating color, and balancing the coated board properties to make them suitable for both offset and flexographic printing. The pilot and mill scale results show that curtain coating has a major positive impact on brightness, while smoothness is improved mainly by the blade coating and calendering conditions. Optimization of base board properties and the blade + curtain + blade concept has resulted in the successful use of 100% recycled fiber to produce base board. The optical, mechanical, and printability properties of the final coated board meet market requirements for both offset and flexographic printing. Machine runnability is excellent at the current speed of 1000 m/min, and titanium dioxide has been eliminated in the coating formulations without affecting the coating coverage. A significant improvement in the total cost of coated white liner production has been achieved, compared to the conventional concept of using virgin fiber in the top ply. Future development will focus on combining low cost with further quality improvements to make linerboard suitable for a wider range of end-use applications, including frozen-food packaging and folding boxboard.


2014 ◽  
Vol 6 (1) ◽  
pp. 27 ◽  
Author(s):  
Desi Mustika Amaliyah

Durian (Durio zibethinus) and cempedak (Artocarpus integer) peels waste are not used by the society. The research aim is to extract pectin from durian and cempedak peels and to formulate the pectin into edible films for food packaging. The research stages were first pre-treatment of durian and cempedak peels, pectin extraction, pectin drying, and  pectin application as edible films with concentration of 0%, 5%, and 15%. Based on this research it was concluded that pectin can be extracted from durian and cempedak peels with yield result of 27.97 % and 55.58 %, respectively. Edible film obtained has  similar characteristics between raw materials cempedak and durian peels. The higher concentration of cempedak peel  pectin increased the thickness, but decreased the tensile strength and elongation at a concentration of 15%. While in edible films from durian peel pectin, the higher concentration of pectin decreased the thickness of edible film on pectin concentration of 15%, lowered tensile strength and raised the edible film elongation.Keywords: waste, durian, cempedak, pectin extraction, edible film


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Jawad Sarfraz ◽  
Tina Gulin-Sarfraz ◽  
Julie Nilsen-Nygaard ◽  
Marit Kvalvåg Pettersen

There is a strong drive in industry for packaging solutions that contribute to sustainable development by targeting a circular economy, which pivots around the recyclability of the packaging materials. The aim is to reduce traditional plastic consumption and achieve high recycling efficiency while maintaining the desired barrier and mechanical properties. In this domain, packaging materials in the form of polymer nanocomposites (PNCs) can offer the desired functionalities and can be a potential replacement for complex multilayered polymer structures. There has been an increasing interest in nanocomposites for food packaging applications, with a five-fold rise in the number of published articles during the period 2010–2019. The barrier, mechanical, and thermal properties of the polymers can be significantly improved by incorporating low concentrations of nanofillers. Furthermore, antimicrobial and antioxidant properties can be introduced, which are very relevant for food packaging applications. In this review, we will present an overview of the nanocomposite materials for food packaging applications. We will briefly discuss different nanofillers, methods to incorporate them in the polymer matrix, and surface treatments, with a special focus on the barrier, antimicrobial, and antioxidant properties. On the practical side migration issues, consumer acceptability, recyclability, and toxicity aspects will also be discussed.


2021 ◽  
Vol 13 (12) ◽  
pp. 6921
Author(s):  
Laura Sisti ◽  
Annamaria Celli ◽  
Grazia Totaro ◽  
Patrizia Cinelli ◽  
Francesca Signori ◽  
...  

In recent years, the circular economy and sustainability have gained attention in the food industry aimed at recycling food industrial waste and residues. For example, several plant-based materials are nowadays used in packaging and biofuel production. Among them, by-products and waste from coffee processing constitute a largely available, low cost, good quality resource. Coffee production includes many steps, in which by-products are generated including coffee pulp, coffee husks, silver skin and spent coffee. This review aims to analyze the reasons why coffee waste can be considered as a valuable source in recycling strategies for the sustainable production of bio-based chemicals, materials and fuels. It addresses the most recent advances in monomer, polymer and plastic filler productions and applications based on the development of viable biorefinery technologies. The exploration of strategies to unlock the potential of this biomass for fuel productions is also revised. Coffee by-products valorization is a clear example of waste biorefinery. Future applications in areas such as biomedicine, food packaging and material technology should be taken into consideration. However, further efforts in techno-economic analysis and the assessment of the feasibility of valorization processes on an industrial scale are needed.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3898
Author(s):  
Surakshi Wimangika Rajapaksha ◽  
Naoto Shimizu

Antioxidant polyphenols in black tea residue are an underused source of bioactive compounds. Microencapsulation can turn them into a valuable functional ingredient for different food applications. This study investigated the potential of using spent black tea extract (SBT) as an active ingredient in food packaging. Free or microencapsulated forms of SBT, using a pectin–sodium caseinate mixture as a wall material, were incorporated in a cassava starch matrix and films developed by casting. The effect of incorporating SBT at different polyphenol contents (0.17% and 0.34%) on the structural, physical, and antioxidant properties of the films, the migration of active compounds into different food simulants and their performance at preventing lipid oxidation were evaluated. The results showed that adding free SBT modified the film structure by forming hydrogen bonds with starch, creating a less elastic film with antioxidant activity (173 and 587 µg(GAE)/g film). Incorporating microencapsulated SBT improved the mechanical properties of active films and preserved their antioxidant activity (276 and 627 µg(GAE)/g film). Encapsulates significantly enhanced the release of antioxidant polyphenols into both aqueous and fatty food simulants. Both types of active film exhibited better barrier properties against UV light and water vapour than the control starch film and delayed lipid oxidation up to 35 d. This study revealed that starch film incorporating microencapsulated SBT can be used as a functional food packaging to protect fatty foods from oxidation.


2021 ◽  
Vol 16 ◽  
pp. 155892502110034
Author(s):  
Xiongfang Luo ◽  
Pei Cheng ◽  
Wencong Wang ◽  
Jiajia Fu ◽  
Weidong Gao

This study establishes an eco-friendly anti-wrinkle treating process for cotton fabric. Sodium hydroxide-liquid ammonia pretreatment followed by 6% (w/w) PU100 adding citric acid pad-cure-dry finishing. In this process, citric acid (CA) was used as the fundamental crosslinking agent during finishing because it is a non-formaldehyde based, cost-effective and well wrinkle resistance agent. Environmental-friendly waterborne polyurethane (WPU) was used as an additive to add to the CA finishing solution. Six commercial WPUs were systematically investigated. Fabric properties like wrinkle resistance, tensile strength retention, whiteness, durable press, softness, and wettability were well investigated. Fourier transform infrared spectra and X-ray diffraction spectra were also measured and discussed before and after adding waterborne polyurethane. Tentative mechanism of the interaction among the WPU, CA, and modified cotton fabrics is provided. The effect of cotton fabric pretreatment on fabric performance was also investigated. After the eco-process’s treatment, the fabric wrinkle resistant angle was upgraded to 271 ± 7°, tensile strength retention was maintained at 66.77% ± 3.50% and CIE whiteness was elevated to 52.13 ± 3.21, which are much better than the traditional CA anti-wrinkle finishing based on mercerized cotton fabrics. This study provides useful information for textile researchers and engineers.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2436
Author(s):  
Abubakar Sadiq Mohammed ◽  
Martina Meincken

Low-cost wood–plastic composites (WPCs) were developed from invasive trees and recycled low-density polyethylene. The aim was to produce affordable building materials for low-cost social housing in South Africa. Both raw materials are regarded as waste materials, and the subsequent product development adds value to the resources, while simultaneously reducing the waste stream. The production costs were minimised by utilising the entire biomass of Acacia saligna salvaged from clearing operations without any prior processing, and low-grade recycled low-density polyethylene to make WPCs without any additives. Different biomass/plastic ratios, particle sizes, and press settings were evaluated to determine the optimum processing parameters to obtain WPCs with adequate properties. The water absorption, dimensional stability, modulus of rupture, modulus of elasticity, tensile strength, and tensile moduli were improved at longer press times and higher temperatures for all blending ratios. This has been attributed to the crystallisation of the lignocellulose and thermally induced cross-linking in the polyethylene. An increased biomass ratio and particle size were positively correlated with water absorption and thickness swelling and inversely related with MOR, tensile strength, and density due to an incomplete encapsulation of the biomass by the plastic matrix. This study demonstrates the feasibility of utilising low-grade recycled polyethylene and the whole-tree biomass of A. saligna, without the need for pre-processing and the addition of expensive modifiers, to produce WPCs with properties that satisfy the minimum requirements for interior cladding or ceiling material.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Olugbenga O. Oluwasina ◽  
Bolaji P. Akinyele ◽  
Sunday J. Olusegun ◽  
Olayinka O. Oluwasina ◽  
Nelcy D. S. Mohallem

AbstractThe adverse environmental effects of petroleum-based packaging plastics have necessitated the need for eco-friendly bioplastics. Most bioplastics are starch-based and are not without drawbacks, hence there is the need for their properties to be improved. In this study, the effect of varying concentrations of dialdehyde starch and silica solutions on the physical, mechanical, biodegradable, surface topology, and thermal properties of the bioplastic films was examined. The additive concentrations were varied from 60 to 100%. The bioplastic films produced with dialdehyde starch solution recorded better moisture content (6.62–11.85%), bioplastic film solubility (4.23–7.90%), and tensile strength (1.63–3.06 MPa), against (11.24–14.26%), (7.77–19.27%) and (0.53–0.73 MPa) respectively for bioplastic films produced with silica solution. The atomic force microscopy analysis; root-mean-square roughness, kurtosis, and skewness revealed better miscibility and compatibility between the starch matrix and the dialdehyde solution than between the starch matrix and the silica solution. Bioplastic with added dialdehyde starch solution has better tensile strength and long biodegradability than that with silica solution. The research has demonstrated that bioplastic film produced with starch and dialdehyde starch solution has better properties than the one produced with starch and silica solution. The properties evaluation results of the bioplastic films thus demonstrated their aptness for food packaging applications. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document