scholarly journals Neuroprotective Effect of Physical Exercise on Neuronal Apoptosis Induced by Tramadol in Cerebral Cortex of Rats

2020 ◽  
Vol 10 (6) ◽  
pp. 7209-7222

Tramadol is a centrally acting analgesic agent with low affinity for opioid receptors, used for treating moderate to severe pain. Tramadol, like other opioids, induces neuronal apoptosis, which causes multiple neuronal impairments. The current study was conducted to evaluate the potential neuroprotective role of physical exercises on tramadol-induced neuronal apoptosis in the cerebral cortex of rats. Thirty adult male rats were divided into three groups (n= 10) as follow; the control group was gavaged with physiological saline (0.9% NaCl); tramadol group was daily administered with tramadol (40 mg/kg) for 28 days, and physical exercise group was administered with the same dose as tramadol group, then rats were forced to run on the treadmill for 30 min, once a day for 28 days. Tramadol induced histopathological changes in the form of neuroses degeneration and apoptosis. These findings were confirmed by immunohistochemical and blotting studies, which showed upregulation of p53 and downregulation of Bcl-2. In addition, malondialdehyde (MDA), myeloperoxidase (MPO), and nuclear factor kappa B (NF-κB) significantly increased following tramadol administration. At the same time, glutathione (GSH) and glutathione peroxidase (GPx) were decreased. In contrast, physical exercise was found to protect cortical neurons from degeneration and apoptosis produced by tramadol. This was evidenced by the downregulation of p53 and upregulating Bcl-2 expression and the improved changes in the oxidative stress biomarkers in rats. Physical exercise reduced the neuronal apoptosis and degeneration in the cerebral cortex following tramadol administration through suppressing oxidative stress.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cankız Mina Ardıç ◽  
Sinem Ilgın ◽  
Merve Baysal ◽  
A. Burak Karaduman ◽  
Volkan Kılıç ◽  
...  

AbstractAlthough it is reported that olanzapine (OLZ), which is an atypical antipsychotic drug, causes sexual dysfunction in men, it is noteworthy that there is not any study evaluating the toxic effects of OLZ on the male reproductive system. In the scope of this research, it was aimed to assess the reproductive toxic effects of OLZ by oral administration of 2.5, 5, or 10 mg/kg of it to male rats for 28 days. For this purpose, sperm concentration, motility and morphology, and DNA damage were determined, and histopathological examination of testis tissue was carried out in rats. Also, the levels of serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone, which play roles in the regulation of reproductive functions, and the levels of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) and malondialdehyde (MDA) which play roles in reproductive pathologies as oxidative stress biomarkers, were determined. According to the results, normal sperm morphology was decreased in 5 ve 10 mg/kg OLZ-administered groups, and pathological findings were evident in the testicular structure of the OLZ-administered group when compared with the control group. It was determined that serum LH, FSH, and testosterone levels were decreased in the OLZ-administered group. Also, decreases of GSH levels in testis tissue were determined and evaluated as the markers of the oxidative stress induced by OLZ in the testis. In conclusion, it was determined that reproductive toxic effects were induced in rats by OLZ administration. This pathology was accompanied by alterations of the hormone levels and testicular oxidative stress.


Author(s):  
Eman A. Al-Rekabi ◽  
Dheyaa K. Alomer ◽  
Rana Talib Al-Muswie ◽  
Khalid G. Al-Fartosi

The present study aimed to investigate the effect of turmeric and ginger on lipid profile of male rats exposed to oxidative stress induced by hydrogen peroxide H2O2 at a concentration of 1% given with consumed drinking water to male rats. Methods: 200 mg/kg from turmeric and ginger were used, and the animals were treatment for 30 days. Results: the results showed a significant increase in cholesterol, triglycerides, low density lipoprotein (LDL), very low density lipoprotein (VLDL), whereas it explained a significant decrease in high density lipoprotein (HDL) of male rats exposed to oxidative stress when compared with control group. the results showed a significant decrease in cholesterol, triglycerides, (LDL), (VLDL), whereas it explained a significant increase in (HDL) of rats treated with turmeric and ginger at dose 200 mg/kg when compared with male rats exposed to oxidative stress.


2021 ◽  
pp. 096032712110134
Author(s):  
O Zouaoui ◽  
K Adouni ◽  
A Jelled ◽  
A Thouri ◽  
A Ben Chrifa ◽  
...  

Phytochemical composition and antioxidant activity of flowers decoction at post-flowering stage (F3D) of Opuntia dejecta were determined. The obtained findings demonstrate that F3D has a marked antioxidant activity in all tested assays. Furthermore, the present study was designed to test the protective activity of F3D against induced Diabetes type 2 (DT2) in male rats. Those metabolic syndromes were induced by a high-fructose diet (HFD) (10% fructose solution) for a period of 20 weeks. F3D was administered orally (100 and 300 mg/kg body weight) daily for the last 4 weeks. Metformin (150 mg/kg body weight) was used as a standard drug and administrated orally for the last 4 weeks. The results showed a significant increase in blood glucose, triglycerides and hepatic markers (ALAT, ASAT and ALK-P) in HFD group. A significant increase in hepatic TBARS and a significant decrease in SOD, CAT and GPX were observed in fructose fed rats compared to control group. Administration of F3D showed a protective effect in biochemical and oxidative stress parameters measured in this study. Also, oral administration of F3D restored the histological architecture of rat liver in comparison with rats fed HFD. In conclusion, F3D attenuated hepatic oxidative stress in fructose-fed rats.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3167
Author(s):  
Flavia Buonaurio ◽  
Maria Luisa Astolfi ◽  
Daniela Pigini ◽  
Giovanna Tranfo ◽  
Silvia Canepari ◽  
...  

Urinary concentrations of 16 different exposure biomarkers to metals were determined at the beginning and at the end of a working shift on a group of workers in the metal carpentry industry. Five different oxidative stress biomarkers were also measured, such as the oxidation products of RNA and DNA metabolized and excreted in the urine. The results of workers exposed to metals were compared to those of a control group. The metal concentrations found in these workers were well below the occupational exposure limit values and exceeded the mean concentrations of the same metals in the urine of the control group by a factor of four at maximum. Barium (Ba), mercury (Hg), lead (Pb) and strontium (Sr) were correlated with the RNA oxidative stress biomarker, 8-oxo-7, 8-dihydroguanosine (8-oxoGuo), which was found able to discriminate exposed workers from controls with a high level of specificity and sensitivity. The power of this early diagnostic technique was assessed by means of the ROC curve. Ba, rubidium (Rb), Sr, tellurium (Te), and vanadium (V) were correlated with the level of the protein oxidation biomarker 3-Nitrotyrosine (3-NO2Tyr), and Ba, beryllium (Be), copper (Cu), and Rb with 5-methylcytidine (5-MeCyt), an epigenetic marker of RNA damage. These effect biomarkers can help in identifying those workers that can be defined as “occupationally exposed” even at low exposure levels, and they can provide information about the impact that such doses have on their health.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1332
Author(s):  
Gilda M. Iova ◽  
Horia Calniceanu ◽  
Adelina Popa ◽  
Camelia A. Szuhanek ◽  
Olivia Marcu ◽  
...  

Background: There is a growing interest in the correlation between antioxidants and periodontal disease. In this study, we aimed to investigate the effect of oxidative stress and the impact of two antioxidants, curcumin and rutin, respectively, in the etiopathology of experimentally induced periodontitis in diabetic rats. Methods: Fifty Wistar albino rats were randomly divided into five groups and were induced with diabetes mellitus and periodontitis: (1) (CONTROL)—control group, (2) (DPP)—experimentally induced diabetes mellitus and periodontitis, (3) (DPC)—experimentally induced diabetes mellitus and periodontitis treated with curcumin (C), (4) (DPR)—experimentally induced diabetes mellitus and periodontitis treated with rutin (R) and (5) (DPCR)—experimentally induced diabetes mellitus and periodontitis treated with C and R. We evaluated malondialdehyde (MDA) as a biomarker of oxidative stress and reduced glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG and catalase (CAT) as biomarkers of the antioxidant capacity in blood harvested from the animals we tested. The MDA levels and CAT activities were also evaluated in the gingival tissue. Results: The control group effect was statistically significantly different from any other groups, regardless of whether or not the treatment was applied. There was also a significant difference between the untreated group and the three treatment groups for variables MDA, GSH, GSSG, GSH/GSSG and CAT. There was no significant difference in the mean effect for the MDA, GSH, GSSG, GSH/GSSG and CAT variables in the treated groups of rats with curcumin, rutin and the combination of curcumin and rutin. Conclusions: The oral administration of curcumin and rutin, single or combined, could reduce the oxidative stress and enhance the antioxidant status in hyperglycemic periodontitis rats.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 375
Author(s):  
Jin Young Hong ◽  
Hyunseong Kim ◽  
Junseon Lee ◽  
Wan-Jin Jeon ◽  
Seung Ho Baek ◽  
...  

Inula britannica var. chinensis (IBC) has been used as a traditional medicinal herb to treat inflammatory diseases. Although its anti-inflammatory and anti-oxidative effects have been reported, whether IBC exerts neuroprotective effects and the related mechanisms in cortical neurons remain unknown. In this study, we investigated the effects of different concentrations of IBC extract (5, 10, and 20 µg/mL) on cortical neurons using a hydrogen peroxide (H2O2)-induced injury model. Our results demonstrate that IBC can effectively enhance neuronal viability under in vitro-modeled reaction oxygen species (ROS)-generating conditions by inhibiting mitochondrial ROS production and increasing adenosine triphosphate level in H2O2-treated neurons. Additionally, we confirmed that neuronal death was attenuated by improving the mitochondrial membrane potential status and regulating the expression of cytochrome c, a protein related to cell death. Furthermore, IBC increased the expression of brain-derived neurotrophic factor and nerve growth factor. Furthermore, IBC inhibited the loss and induced the production of synaptophysin, a major synaptic vesicle protein. This study is the first to demonstrate that IBC exerts its neuroprotective effect by reducing mitochondria-associated oxidative stress and improving mitochondrial dysfunction.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Ginette Bordcoch ◽  
Ivan Tavera Busso ◽  
Juan Masjoan Juncos ◽  
Luis I Juncos

Hypertension has been linked to a progressive increased in oxidative stress and inflammation. The high prevalence of hypertension poses a great risk to public health as 108 million adults in the United States have the condition. For that reason, a better understanding of the link between a high Na+ intake and the development of hypertension is of crucial importance. We hypothesize that a single ingestion of a high Na+ solution leads to increased oxidative stress and triggers an inflammatory response. Wistar 200-250 g male rats had gastric infusions through the esophagus. Groups were infused with 8 mL liquid Vaseline (Control), 8 mL of NaCl 0.684 M (4% m/v), and 8 mL of NaCl 1.368 M (8% m/v). After infusion, blood was collected at different time points during the first hour. Tissue samples were obtained from the aorta, heart, and kidney. Electron Microscopy (EM) was performed on all tissues, which were also analyzed for molecular markers of oxidative stress: Superoxide Dismutase (SOD) and Malondialdehyde (MDA), and an inflammation marker: Extracellular Signal-Regulated Kinase (ERK). At 2 and a half minutes, serum Na+ concentration was unchanged in the control group compared to an increase observed in animals receiving 4% and 8% Na+ with concentrations of 135±1.4 mEq/L, 141±2.0 mEq/L, and 140±1.2 mEq/L respectively. At the 1-hour time point after infusion, the difference was further increased in the 8% group with serum concentrations of 135±1.8 mEq/L, 140±1.5 mEq/L, and 152±1mEq/L respectively (p<0.05). There was an increase in oxidative stress in the aorta from values of 36.22±4.64 mU/mg SOD and 0.131±0.013 pg/mL MDA in the control group, to 47.11±4.89 mU/mg SOD and 0.291±0.022 pg/mL MDA in the 8% group (p<0.05 in both cases). The same was observed in the heart, where values were: 174.6125.26 mU/mg SOD, 0.026±0.007 pg/mL MDA in controls, and 259.22±21.98 mU/mg SOD, 0.215±0.073 pg/mL MDA in 8% group (p<0.05 both cases). Increased ERK in aortic tissue, values of 0.29±0.03 pg/mL in controls, 2.68±0.18 pg/mL in 4% group and 3.97±0.68pg/mL in 8% group (p<0.05) suggest increased inflammation. We conclude that the elevation in serum Na+ concentration that follows Na+ ingestion leads to increased oxidative stress and inflammation.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2202
Author(s):  
Micaelle Oliveira de Luna Freire ◽  
Luciana Caroline Paulino do Nascimento ◽  
Kataryne Árabe Rimá de Oliveira ◽  
Alisson Macário de Oliveira ◽  
Thiago Henrique Napoleão ◽  
...  

High-fat diet (HFD) consumption has been linked to dyslipidemia, low-grade inflammation and oxidative stress. This study investigated the effects of a mixed formulation with Limosilactobacillusfermentum 139, L. fermentum 263 and L. fermentum 296 on cardiometabolic parameters, fecal short-chain fatty acid (SCFA) contents and biomarkers of inflammation and oxidative stress in colon and heart tissues of male rats fed an HFD. Male Wistar rats were grouped into control diet (CTL, n = 6), HFD (n = 6) and HFD with L. fermentum formulation (HFD-Lf, n = 6) groups. The L.fermentum formulation (1 × 109 CFU/mL of each strain) was administered twice a day for 4 weeks. After a 4-week follow-up, biochemical parameters, fecal SCFA, cytokines and oxidative stress variables were evaluated. HFD consumption caused hyperlipidemia, hyperglycemia, low-grade inflammation, reduced fecal acetate and propionate contents and increased biomarkers of oxidative stress in colon and heart tissues when compared to the CTL group. Rats receiving the L. fermentum formulation had reduced hyperlipidemia and hyperglycemia, but similar SCFA contents in comparison with the HFD group (p < 0.05). Rats receiving the L. fermentum formulation had increased antioxidant capacity throughout the colon and heart tissues when compared with the control group. Administration of a mixed L. fermentum formulation prevented hyperlipidemia, inflammation and oxidative stress in colon and heart tissues induced by HFD consumption.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250885
Author(s):  
Zhaofang Chen ◽  
Kexin Shi ◽  
Wenjie Kuang ◽  
Lei Huang

Cadmium (Cd) is a toxic non-essential element, while calcium (Ca) is an essential element with high chemical similarity to Cd. Dietary intake is the major Cd exposure pathway for non-smokers. A multi-concentration dietary intervention experiment was designed to explore the optimum concentration of Ca in diet with obvious protective effects against the toxicity of livers and kidneys induced by Cd in mice. The mice were divided into six groups with different concentrations of Cd and Ca in their food: control-group (no Cd or Ca), Ca-group (100 g/kg Ca, without Cd), Cd-group (2 mg/kg Cd, without Ca), CaL+Cd-group (2 mg/kg Cd, 2 g/kg Ca), CaM+Cd-group (2 mg/kg Cd, 20 g/kg Ca) and CaH+Cd-group (2 mg/kg Cd, 100 g/kg Ca). The organ indexes, oxidative stress biomarkers, lesions and Cd concentrations were detected after a 30-day exposure period. Results showed that serum Aspartate Aminotransferase (AST) level in CaH+Cd-group was significantly lower than that in Cd-group, while close to that in control-group. The contents of Serum Blood Urea Nitrogen (BUN) in different groups showed the same trend. Concentrations of all oxidative stress biomarkers (GSH-Px, SOD, CAT, GSH and MDA) in CaH+Cd-group were close to the normal levels of control-group while significantly different from those in Cd-group. The only exception was the Malondialdehyde (MDA) levels in kidneys. This study suggests that Ca plays a protective role in relieving the Cd-induced toxicity of livers and kidneys and a concentration of 100 g/kg for Ca in diet showed the best protective effects. These findings could provide a clue for further studies concerning human diet intervention for Cd control.


2020 ◽  
Vol 29 (3) ◽  
pp. 245-9
Author(s):  
Rostika Flora ◽  
Mohammad Zulkarnain ◽  
Sukirno

BACKGROUND Physical exercise is strongly associated with the release of β-endorphin. It is assumed that the type and intensity of physical exercise contributes to the release of β-endorphin. This study aimed to compare levels of β-endorphin in brain tissue in response to aerobic and anaerobic physical exercise. METHODS This study was an experimental laboratory study using 35 male Wistar rats divided into one control group and two physical exercise treatment groups: aerobic and anaerobic. Physical exercise was conducted on an animal treadmill running at aspeed of 20 m/min for 30 min of aerobic exercise and 35 m/min with 1-min intervals every 5 min for 20 min for anaerobic exercises. Each aerobic and anaerobic exercise group was furtherly classified into three subgroups (1×/week, 3×/week, and 7×/week). β-endorphin levels were determined using enzyme-linked immunosorbent assay. The data were analyzed using independent t-test and one-way analysis of variance. RESULTS The highest mean of β-endorphin level was found in the weekly exercise (54.45 [1.41] pg/ml) of aerobic exercise group and daily exercise (70.50 [11.67] pg/ml) of anaerobic exercise group. Mean of β-endorphin level in control group was 33.34 (3.54) pg/ml. A significant increased of β-endorphin mean level (p<0.001) was found in all aerobic and anaerobic exercise groups except the aerobic exercise 7×/week group(37.37 [6.30] pg/ml) compared to control. CONCLUSIONS Both aerobic and anaerobic physical exercise conducted for 6 weeks could increase the level of β-endorphin in brain tissue.


Sign in / Sign up

Export Citation Format

Share Document