scholarly journals The Effect of Colistin Treatment on the Selection of Colistin-Resistant Escherichia coli in Weaner Pigs

Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 465
Author(s):  
Shahana Ahmed ◽  
Claus Hansen ◽  
Ane Laursen Dahlkilde ◽  
Ana Herrero-Fresno ◽  
Ken Steen Pedersen ◽  
...  

The treatment of diarrhea in the postweaning period is a common reason for the use of antimicrobials in pig production, and Escherichia coli is the single most important causative agent for this condition. Colistin has recently been classified as a critically important antimicrobial for human health, as it is a last-resort drug against certain multi-drug-resistant Gram-negative bacteria. Therefore, the use of colistin has been significantly reduced in some countries, including Denmark. Despite this, the drug is still commonly used to treat diarrhea in pigs in many countries, and there is a need to understand the risks associated with this practice. We performed a prospective cohort study to investigate the effect of colistin treatment on the changes in the average minimum inhibitory concentration (MIC) in commensal E. coli in a pig herd where no colistin-resistant bacteria were detectable before treatment. One group of pigs was batch treated with colistin after the clinical observation of diarrhea, one group was batch treated with colistin approximately 10 days before the expected onset of diarrhea, and a control group was not treated with colistin but provided with nonantimicrobial antidiarrheal feed supplement. Treatment with colistin in the dose and time combinations used did not result in a significant increase in the average colistin MIC values in E. coli. Moreover, no E. coli strains showed a MIC above the breakpoint of >2 mg/L against colistin. Co-selection of resistance to other antimicrobials was not observed.

Genes ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 504 ◽  
Author(s):  
Gabhan Chalmers ◽  
Kelly Rozas ◽  
Raghavendra Amachawadi ◽  
Harvey Scott ◽  
Keri Norman ◽  
...  

Copper is used as an alternative to antibiotics for growth promotion and disease prevention. However, bacteria developed tolerance mechanisms for elevated copper concentrations, including those encoded by the pco operon in Gram-negative bacteria. Using cohorts of weaned piglets, this study showed that the supplementation of feed with copper concentrations as used in the field did not result in a significant short-term increase in the proportion of pco-positive fecal Escherichia coli. The pco and sil (silver resistance) operons were found concurrently in all screened isolates, and whole-genome sequencing showed that they were distributed among a diversity of unrelated E. coli strains. The presence of pco/sil in E. coli was not associated with elevated copper minimal inhibitory concentrations (MICs) under a variety of conditions. As found in previous studies, the pco/sil operons were part of a Tn7-like structure found both on the chromosome or on plasmids in the E. coli strains investigated. Transfer of a pco/sil IncHI2 plasmid from E. coli to Salmonella enterica resulted in elevated copper MICs in the latter. Escherichia coli may represent a reservoir of pco/sil genes transferable to other organisms such as S. enterica, for which it may represent an advantage in the presence of copper. This, in turn, has the potential for co-selection of resistance to antibiotics.


Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 644
Author(s):  
Agnieszka Necel ◽  
Sylwia Bloch ◽  
Bożena Nejman-Faleńczyk ◽  
Aleksandra Dydecka ◽  
Gracja Topka-Bielecka ◽  
...  

Shiga toxin-producing Escherichia coli (STEC) can cause severe infections in humans, leading to serious diseases and dangerous complications, such as hemolytic-uremic syndrome. Although cattle are a major reservoir of STEC, the most commonly occurring source of human infections are food products (e.g., vegetables) contaminated with cow feces (often due to the use of natural fertilizers in agriculture). Since the use of antibiotics against STEC is controversial, other methods for protection of food against contaminations by these bacteria are required. Here, we propose a validation system for selection of bacteriophages against STEC contamination. As a model system, we have employed a STEC-specific bacteriophage vB_Eco4M-7 and the E. coli O157:H7 strain no. 86-24, bearing Shiga toxin-converting prophage ST2-8624 (Δstx2::cat gfp). When these bacteria were administered on the surface of sliced cucumber (as a model vegetable), significant decrease in number viable E. coli cells was observed after 6 h of incubation. No toxicity of vB_Eco4M-7 against mammalian cells (using the Balb/3T3 cell line as a model) was detected. A rapid decrease of optical density of STEC culture was demonstrated following addition of a vB_Eco4M-7 lysate. However, longer incubation of susceptible bacteria with this bacteriophage resulted in the appearance of phage-resistant cells which predominated in the culture after 24 h incubation. Interestingly, efficiency of selection of bacteria resistant to vB_Eco4M-7 was higher at higher multiplicity of infection (MOI); the highest efficiency was evident at MOI 10, while the lowest occurred at MOI 0.001. A similar phenomenon of selection of the phage-resistant bacteria was also observed in the experiment with the STEC-contaminated cucumber after 24 h incubation with phage lysate. On the other hand, bacteriophage vB_Eco4M-7 could efficiently develop in host bacterial cells, giving plaques at similar efficiency of plating at 37, 25 and 12 °C, indicating that it can destroy STEC cells at the range of temperatures commonly used for vegetable short-term storage. These results indicate that bacteriophage vB_Eco4M-7 may be considered for its use in food protection against STEC contamination; however, caution should be taken due to the phenomenon of the appearance of phage-resistant bacteria.


2017 ◽  
Vol 199 (10) ◽  
Author(s):  
Brittany L. Nairn ◽  
Olivia S. Eliasson ◽  
Dallas R. Hyder ◽  
Noah J. Long ◽  
Aritri Majumdar ◽  
...  

ABSTRACT Gram-negative bacteria acquire ferric siderophores through TonB-dependent outer membrane transporters (TBDT). By fluorescence spectroscopic hgh-throughput screening (FLHTS), we identified inhibitors of TonB-dependent ferric enterobactin (FeEnt) uptake through Escherichia coli FepA (EcoFepA). Among 165 inhibitors found in a primary screen of 17,441 compounds, we evaluated 20 in secondary tests: TonB-dependent ferric siderophore uptake and colicin killing and proton motive force-dependent lactose transport. Six of 20 primary hits inhibited TonB-dependent activity in all tests. Comparison of their effects on [59Fe]Ent and [14C]lactose accumulation suggested several as proton ionophores, but two chemicals, ebselen and ST0082990, are likely not proton ionophores and may inhibit TonB-ExbBD. The facility of FLHTS against E. coli led us to adapt it to Acinetobacter baumannii. We identified its FepA ortholog (AbaFepA), deleted and cloned its structural gene, genetically engineered 8 Cys substitutions in its surface loops, labeled them with fluorescein, and made fluorescence spectroscopic observations of FeEnt uptake in A. baumannii. Several Cys substitutions in AbaFepA (S279C, T562C, and S665C) were readily fluoresceinated and then suitable as sensors of FeEnt transport. As in E. coli, the test monitored TonB-dependent FeEnt uptake by AbaFepA. In microtiter format with A. baumannii, FLHTS produced Z′ factors 0.6 to 0.8. These data validated the FLHTS strategy against even distantly related Gram-negative bacterial pathogens. Overall, it discovered agents that block TonB-dependent transport and showed the potential to find compounds that act against Gram-negative CRE (carbapenem-resistant Enterobacteriaceae)/ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. Our results suggest that hundreds of such chemicals may exist in larger compound libraries. IMPORTANCE Antibiotic resistance in Gram-negative bacteria has spurred efforts to find novel compounds against new targets. The CRE/ESKAPE pathogens are resistant bacteria that include Acinetobacter baumannii, a common cause of ventilator-associated pneumonia and sepsis. We performed fluorescence high-throughput screening (FLHTS) against Escherichia coli to find inhibitors of TonB-dependent iron transport, tested them against A. baumannii, and then adapted the FLHTS technology to allow direct screening against A. baumannii. This methodology is expandable to other drug-resistant Gram-negative pathogens. Compounds that block TonB action may interfere with iron acquisition from eukaryotic hosts and thereby constitute bacteriostatic antibiotics that prevent microbial colonization of human and animals. The FLHTS method may identify both species-specific and broad-spectrum agents against Gram-negative bacteria.


2018 ◽  
Vol 44 (1) ◽  
pp. 8
Author(s):  
Caroline Pissetti ◽  
Gabriela Orosco Werlang ◽  
Jalusa Deon Kich ◽  
Marisa Cardoso

Background: Antimicrobial resistant bacteria are considered a hazard not only for the treatment of animal diseases but also for public health. Commensal bacteria, such as Escherichia coli are considered a good indicator of antimicrobial resistance in the population, because it is a gut inhabitant and thus undergoes constant pressure of selection by the administration of antimicrobials. Regarding the public health, it is important to evaluate if resistant bacteria carried in the intestinal content of slaughter pigs can be found on the surface of pre chill carcasses. Therefore, the aims of this study were to evaluate the frequency of antimicrobial resistance in E. coli isolated from feces and pig carcasses; and to assess if multi-resistant isolates from both sources were phenotypically and genotypically related.Materials, Methods & Results: Two sampling cycles were conducted in three pig slaughterhouses (A, B and C). In each cycle, samples were collected form: i. feces deposited on the pen floor of the lairage; ii. surface of carcasses at the prechill step. Samples were submitted to a protocol of isolation and confirmation of Escherichia coli. Isolates were grouped according to the origin: feces (n = 355); carcasses (n = 319); and evaluated for antimicrobial resistance by agar diffusion test. Ninety two isolates presenting multidrug resistance profile were analyzed by pulsed-field gel eletrophoresis (PFGE). Among the 674 isolates of E. coli, 7.4% were susceptible to all tested antibiotics while 79.5% (536/674) were multi-resistant. The most frequent resistance patterns were displayed to tetracycline (Tet, 85.9%), ampicillin (Amp, 73.0%), sulfonamide (Sul, 70.0%), florfenicol (Flo, 65.0%) and nalidixic acid (Nal, 58.9%). The most frequent multi-resistance profile among isolates from both origins was [AmpFloNalSulTet]. Multiresistant isolates originated from feces and carcasses displaying genotypically related pulsotypes (≥70% similarity) were found in all three slaughterhouses.Discussion: In agreement with other studies, E. coli isolated from pig feces and carcasses demonstrated a high frequency of antimicrobial resistance and multi-resistance. The most frequent resistance profiles included antimicrobials frequently used on farm as well as drugs that have been banned as feed additives some years ago in Brazil. The selection of resistant strains may be related to the selection pressiondue to the use of antimicrobials in the pig production chain as well as the co-selection of resistance mediated by genes located in common genetic elements. Therefore, the ban of an individual drug is not always associated with the immediate disappearance of the resistance phenotype in the bacteria population. The fact that most multi-resistant E. coli isolates from carcasses belonged to pulsotypes related to those originated from feces samples indicates that resistant E. coli isolates selected on farm may be able to survive the slaughter process and be found on the carcass. In this case, the possibility of those strains being able to reach the population through the consumption of pork products may have to be considered. This hazard has motivated the ban of antimicrobial use in animals in some countries. However, the ban of antimicrobials use on farm is a controversial issue, due to the economical losses that may result from this measure. Therefore, the prudent use of antimicrobials on farm should be encouraged and its influence in the multi-resistance profile of the enteric microbiota should be further studied.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 850
Author(s):  
Shobha Giri ◽  
Vaishnavi Kudva ◽  
Kalidas Shetty ◽  
Veena Shetty

As the global urban populations increase with rapid migration from rural areas, ready-to-eat (RTE) street foods are posing food safety challenges where street foods are prepared with less structured food safety guidelines in small and roadside outlets. The increased presence of extended-spectrum-β-lactamase (ESBL) producing bacteria in street foods is a significant risk for human health because of its epidemiological significance. Escherichia coli and Klebsiella pneumoniae have become important and dangerous foodborne pathogens globally for their relevance to antibiotic resistance. The present study was undertaken to evaluate the potential burden of antibiotic-resistant E. coli and K. pneumoniae contaminating RTE street foods and to assess the microbiological quality of foods in a typical emerging and growing urban suburb of India where RTE street foods are rapidly establishing with public health implications. A total of 100 RTE food samples were collected of which, 22.88% were E. coli and 27.12% K. pneumoniae. The prevalence of ESBL-producing E. coli and K. pneumoniae was 25.42%, isolated mostly from chutneys, salads, paani puri, and chicken. Antimicrobial resistance was observed towards cefepime (72.9%), imipenem (55.9%), cefotaxime (52.5%), and meropenem (16.9%) with 86.44% of the isolates with MAR index above 0.22. Among β-lactamase encoding genes, blaTEM (40.68%) was the most prevalent followed by blaCTX (32.20%) and blaSHV (10.17%). blaNDM gene was detected in 20.34% of the isolates. This study indicated that contaminated RTE street foods present health risks to consumers and there is a high potential of transferring multi-drug-resistant bacteria from foods to humans and from person to person as pathogens or as commensal residents of the human gut leading to challenges for subsequent therapeutic treatments.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tessa B. Moyer ◽  
Ashleigh L. Purvis ◽  
Andrew J. Wommack ◽  
Leslie M. Hicks

Abstract Background Plant defensins are a broadly distributed family of antimicrobial peptides which have been primarily studied for agriculturally relevant antifungal activity. Recent studies have probed defensins against Gram-negative bacteria revealing evidence for multiple mechanisms of action including membrane lysis and ribosomal inhibition. Herein, a truncated synthetic analog containing the γ-core motif of Amaranthus tricolor DEF2 (Atr-DEF2) reveals Gram-negative antibacterial activity and its mechanism of action is probed via proteomics, outer membrane permeability studies, and iron reduction/chelation assays. Results Atr-DEF2(G39-C54) demonstrated activity against two Gram-negative human bacterial pathogens, Escherichia coli and Klebsiella pneumoniae. Quantitative proteomics revealed changes in the E. coli proteome in response to treatment of sub-lethal concentrations of the truncated defensin, including bacterial outer membrane (OM) and iron acquisition/processing related proteins. Modification of OM charge is a common response of Gram-negative bacteria to membrane lytic antimicrobial peptides (AMPs) to reduce electrostatic interactions, and this mechanism of action was confirmed for Atr-DEF2(G39-C54) via an N-phenylnaphthalen-1-amine uptake assay. Additionally, in vitro assays confirmed the capacity of Atr-DEF2(G39-C54) to reduce Fe3+ and chelate Fe2+ at cell culture relevant concentrations, thus limiting the availability of essential enzymatic cofactors. Conclusions This study highlights the utility of plant defensin γ-core motif synthetic analogs for characterization of novel defensin activity. Proteomic changes in E. coli after treatment with Atr-DEF2(G39-C54) supported the hypothesis that membrane lysis is an important component of γ-core motif mediated antibacterial activity but also emphasized that other properties, such as metal sequestration, may contribute to a multifaceted mechanism of action.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 228
Author(s):  
Michaela Projahn ◽  
Jana Sachsenroeder ◽  
Guido Correia-Carreira ◽  
Evelyne Becker ◽  
Annett Martin ◽  
...  

Cefotaxime (CTX)-resistant Enterobacteriaceae are still an ongoing challenge in human and veterinary health. High prevalence of these resistant bacteria is detected in broiler chickens and the prevention of their dissemination along the production pyramid is of major concern. The impact of certain on-farm interventions on the external bacterial contamination of broiler chickens, as well as their influence on single processing steps and (cross-) contamination, have not yet been evaluated. Therefore, we investigated breast skin swab samples of broiler chickens before and during slaughter at an experimental slaughter facility. Broiler chickens were previously challenged with CTX-resistant Escherichia coli strains in a seeder-bird model and subjected to none (control group (CG)) or four different on-farm interventions: drinking water supplementation based on organic acids (DW), slow growing breed Rowan × Ranger (RR), reduced stocking density (25 kg/sqm) and competitive exclusion with Enterobacteriales strain IHIT36098(CE). Chickens of RR, 25 kg/sqm, and CE showed significant reductions of the external contamination compared to CG. The evaluation of a visual scoring system indicated that wet and dirty broiler chickens are more likely a vehicle for the dissemination of CTX-resistant and total Enterobacteriaceae into the slaughterhouses and contribute to higher rates of (cross-) contamination during processing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaitlin S. Witherell ◽  
Jason Price ◽  
Ashok D. Bandaranayake ◽  
James Olson ◽  
Douglas R. Call

AbstractMultidrug-resistant bacteria are a growing global concern, and with increasingly prevalent resistance to last line antibiotics such as colistin, it is imperative that alternative treatment options are identified. Herein we investigated the mechanism of action of a novel antimicrobial peptide (CDP-B11) and its effectiveness against multidrug-resistant bacteria including Escherichia coli #0346, which harbors multiple antibiotic-resistance genes, including mobilized colistin resistance gene (mcr-1). Bacterial membrane potential and membrane integrity assays, measured by flow cytometry, were used to test membrane disruption. Bacterial growth inhibition assays and time to kill assays measured the effectiveness of CDP-B11 alone and in combination with colistin against E. coli #0346 and other bacteria. Hemolysis assays were used to quantify the hemolytic effects of CDP-B11 alone and in combination with colistin. Findings show CDP-B11 disrupts the outer membrane of E. coli #0346. CDP-B11 with colistin inhibits the growth of E. coli #0346 at ≥ 10× lower colistin concentrations compared to colistin alone in Mueller–Hinton media and M9 media. Growth is significantly inhibited in other clinically relevant strains, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. In rich media and minimal media, the drug combination kills bacteria at a lower colistin concentration (1.25 μg/mL) compared to colistin alone (2.5 μg/mL). In minimal media, the combination is bactericidal with killing accelerated by up to 2 h compared to colistin alone. Importantly, no significant red blood hemolysis is evident for CDP-B11 alone or in combination with colistin. The characteristics of CDP-B11 presented here indicate that it can be used as a potential monotherapy or as combination therapy with colistin for the treatment of multidrug-resistant infections, including colistin-resistant infections.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 744
Author(s):  
Altaf Bandy ◽  
Bilal Tantry

Antimicrobial-resistance in Enterobacterales is a serious concern in Saudi Arabia. The present study retrospectively analyzed the antibiograms of Enterobacterales identified from 1 January 2019 to 31 December 2019 from a referral hospital in the Aljouf region of Saudi Arabia. The revised document of the Centers for Disease Control (CDC) CR-2015 and Magiorakos et al.’s document were used to define carbapenem resistance and classify resistant bacteria, respectively. The association of carbapenem resistance, MDR, and ESBL with various sociodemographic characteristics was assessed by the chi-square test and odds ratios. In total, 617 Enterobacterales were identified. The predominant (n = 533 (86.4%)) isolates consisted of 232 (37.6%), 200 (32.4%), and 101 (16.4%) Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis, respectively. In general, 432 (81.0%) and 128 (24.0%) isolates were of MDR and ESBL, respectively. The MDR strains were recovered in higher frequency from intensive care units (OR = 3.24 (1.78–5.91); p < 0.01). E. coli and K. pneumoniae resistance rates to imipenem (2.55 (1.21–5.37); p < 0.01) and meropenem (2.18 (1.01–4.67); p < 0.04), respectively, were significantly higher in winter. The data emphasize that MDR isolates among Enterobacterales are highly prevalent. The studied Enterobacterales exhibited seasonal variation in antimicrobial resistance rates towards carbapenems and ESBL activity.


2021 ◽  
Vol 9 (2) ◽  
pp. 326
Author(s):  
Frederick Adzitey ◽  
Nurul Huda ◽  
Amir Husni Mohd Shariff

Meat is an important food source that can provide a significant amount of protein for human development. The occurrence of bacteria that are resistant to antimicrobials in meat poses a public health risk. This study evaluated the occurrence and antimicrobial resistance of E. coli (Escherichia coli) isolated from raw meats, ready-to-eat (RTE) meats and their related samples in Ghana. E. coli was isolated using the USA-FDA Bacteriological Analytical Manual and phenotypic antimicrobial susceptibility test was performed by the disk diffusion method. Of the 200 examined meats and their related samples, 38% were positive for E. coli. Notably, E. coli was highest in raw beef (80%) and lowest in RTE pork (0%). The 45 E. coli isolates were resistant ≥ 50% to amoxicillin, trimethoprim and tetracycline. They were susceptible to azithromycin (87.1%), chloramphenicol (81.3%), imipenem (74.8%), gentamicin (72.0%) and ciprofloxacin (69.5%). A relatively high intermediate resistance of 33.0% was observed for ceftriaxone. E. coli from raw meats, RTE meats, hands of meat sellers and working tools showed some differences and similarities in their phenotypic antimicrobial resistance patterns. Half (51.1%) of the E. coli isolates exhibited multidrug resistance. The E. coli isolates showed twenty-two different resistant patterns, with a multiple antibiotic resistance index of 0.0 to 0.7. The resistant pattern amoxicillin (A, n = 6 isolates) and amoxicillin-trimethoprim (A-TM, n = 6 isolates) were the most common. This study documents that raw meats, RTE meats and their related samples in Ghana are potential sources of antimicrobial-resistant E. coli and pose a risk for the transfer of resistant bacteria to the food chain, environment and humans.


Sign in / Sign up

Export Citation Format

Share Document