scholarly journals Design of a High Speed and Area Efficient Novel Adder for AES Applications

2019 ◽  
Vol 8 (2) ◽  
pp. 5261-5265

In the design of VLSI circuits, there is huge power consumption because of circuit complexity. It is known that the demand for portable equipment is rapidly increasing now a days. Recently power efficient circuit designs have been concentrated. In complex arithmetic circuits adder is the most important building block. These are widely used in some other applications also like Central Processing Units, Arithmetic Logic Units and floating-point units. In case of cache memory access and in digital signal processing, these are used for address generation. Adders are most significant in control systems also. The speed of a processor and system accuracy is based on the performance of this adder. Regularly, Ripple Carry Adder is elected for two N-bit numbers adder due to fast design time of these RCAs among various other types of adders. Even though if RCA has fast design time, but it is limited in time because of that each full adder must wait for the carry bits of previous full adder blocks. A carry tree adder is proposed in this paper which is efficiently implemented technique at gate level for decreasing the delay and decreasing the memory usage.

2022 ◽  
Vol 2161 (1) ◽  
pp. 012050
Author(s):  
Imran Ahmed Khan

Abstract Due to physical, material, technological, power-thermal and economical difficulties, scaling of CMOS transistors will stop very soon. Due to efficiency of power and speed compared to CMOS transistors, Carbon Nano-tube transistors are best suitable element to design logic circuits. So, CNTFETS have been utilized in designing of proposed full adder (FA) and 4-bit ripple carry adder (RCA) in this paper. Proposed FA and RCA have been compared to rival designs on bases of power, speed and power-delay-product (PDP). FA and RCA circuits have been analysed with the variation of temperature from 0°C to 100°C while the variation of supply voltages is from 0.7V to 1.3V. For all temperatures and all supply voltages, proposed FA and proposed RCA have the least power consumption, shortest delay and lowest PDP. SPICE has been utilized for simulating FAs and RCAs in 32 nm process node. Even though the fabrication is complicated than CMOS counterparts but simulation results confirm usefulness of proposed FA and RCA for high speed and power efficient arithmetic applications.


Author(s):  
Basavoju Harish ◽  
M. S. S. Rukmini

In the field of bio medical engineering high performance CPU for digital signal processing plays a significant role. Frequency efficient circuit is a paramount requirement for the portable digital devices employing various digital processors. In this work a novel high speed one-bit 10T full adder with complemented output was described. The circuit was constructed with XOR gates which were built using two CMOS transistors. The XOR gate was constructed using 2T multiplexer circuit style. It was observed that power consumption of the designed circuit at 180nm with supply voltage 1.8V is 183.6 uW and delay was 1.809 ps whereas power consumption at 90nm with supply voltage 1.2V is 25.74 uW and delay was 8.245 ps. The observed Power Delay Product (PDP) in 180nm (at supply voltage 1.8V) is 0.33 and in 90nm (at supply voltage 1.2V) is 0.212. The work was extended by implementing a 32-bit Ripple Carry Adder (RCA) and was found that the delay at 180nm is 93.7ps and at 90nm is 198ps. The results were drawn at 180nm and also 90nm technology using CAD tool. The results say that the present work offered significant enhancement in speed and PDP compared with existing designs.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 369 ◽  
Author(s):  
Padmanabhan Balasubramanian ◽  
Nikos Mastorakis

Addition is a fundamental operation in microprocessing and digital signal processing hardware, which is physically realized using an adder. The carry-lookahead adder (CLA) and the carry-select adder (CSLA) are two popular high-speed, low-power adder architectures. The speed performance of a CLA architecture can be improved by adopting a hybrid CLA architecture which employs a small-size ripple-carry adder (RCA) to replace a sub-CLA in the least significant bit positions. On the other hand, the power dissipation of a CSLA employing full adders and 2:1 multiplexers can be reduced by utilizing binary-to-excess-1 code (BEC) converters. In the literature, the designs of many CLAs and CSLAs were described separately. It would be useful to have a direct comparison of their performances based on the design metrics. Hence, we implemented homogeneous and hybrid CLAs, and CSLAs with and without the BEC converters by considering 32-bit accurate and approximate additions to facilitate a comparison. For the gate-level implementations, we considered a 32/28 nm complementary metal-oxide-semiconductor (CMOS) process targeting a typical-case process–voltage–temperature (PVT) specification. The results show that the hybrid CLA/RCA architecture is preferable among the CLA and CSLA architectures from the speed and power perspectives to perform accurate and approximate additions.


Author(s):  
Nakul C. Kubsad

Abstract: Full adder circuit is one among the fundamental and necessary digital part. The full adder is be a part of microprocessors, digital signal processors etc. It's needed for the arithmetic and logical operations. Full adder design enhancements are necessary for recent advancement. The requirement of an adder cell is to provide high speed, consume low power and provide high voltage swing. This paper analyses and compares 3 adders with completely different logic designs (Conventional, transmission gate & pseudo NMOS) for transistor count, power dissipation and delay. The simulation is performed in Cadence virtuoso tool with accessible GPDK – 180nm kit. Transmission gate full adder has sheer advantage of high speed, fewer space and also it shows higher performance in terms of delay. Keywords: Delay, power dissipation, voltage, transistor sizing.


Author(s):  
T. Suguna ◽  
M. Janaki Rani

In VLSI, power optimization is the main criteria for all the portable mobile applications and developments because of its impact on system performance. The performance of an adder has significant impact on overall performance of a digital system. Adiabatic logic (AL), a new emerging research domain for optimizing the power in VLSI circuits with high switching activity is discussed, in this paper, for implementing the adder circuits. Various adiabatic logic styles full adder designs are reviewed and multiplexer based hybrid full adder topology is designed and implemented with ECRL and 2PASCL AL styles. Moreover in this paper, 32 bit adders such as Ripple Carry Adder (RCA), Carry Select Adder (CSLA), Carry Save Adder (CSA), Carry Skip Adder (CSKA) and Brent Kung Adder (BKA) are realised using proposed ECRL and 2PASCL adiabatic full adders. All the adders are implemented and simulated using TANNER EDA tool 22nm technology, parameters like power, area, delay and power delay product (PDP) of all the adders are observed at different operating frequencies, with supply voltage of 0.95 v and load capacitance of 0.5 pF. The observed parameters are compared with the existing adiabatic full adder designs and concluded that the proposed adiabatic full adders have the advantages of less power, delay and transistor count. In conclusion ECRL full adder is 31% faster, has equal PDP and less area than 2PASCL full adder. At 1000MHz ECRL 32 bit carry save adder is having less delay among all the 32 bit adder and 65% less PDP than 2PASCL adder and it is concluded that ECRL 32 bit carry save adder can be selected for implementation of circuits that can be used in portable mobile applications.


2019 ◽  
Vol 11 (1) ◽  
pp. 80-87 ◽  
Author(s):  
Jitendra Kumar Saini ◽  
Avireni Srinivasulu ◽  
Renu Kumawat

The transformation from the development of enabling technology to mass production of consumer-centric semiconductor products has empowered the designers to consider characteristics like robustness, compactness, efficiency, and scalability of the product as implicit pre-cursors. The Carbon Nanotube Field Effect Transistor (CNFET) is the present day technology. In this manuscript, we have used CNFET as the enabling technology to design a 1-bit Full Adder (1b-FA16) with overflow detection. The proposed 1b-FA16 is designed using 16 transistors. Finally, the proposed 1b-FA16 is further used to design a Ripple Carry Adder (RCA), Carry Look Ahead Adder (CLA) circuit and RCA with overflow bit detection. Methods and Results: The proposed 1b-FA16 circuit was designed with CNFET technology simulated at 32 nm with a voltage supply of +0.9 V using the Cadence Virtuoso CAD tool. The model used is Stanford PTM. Comparison of the existing full adder designs with the proposed 1b-FA16 design was done to validate the improvements in terms of power, delay and Power Delay Product (PDP). Table 2, shows the results of comparison for the proposed 1b-FA16 with the existing full adder designs implemented using CNFET for parameters like power, delay and power delay product. Conclusion: It can be concluded that the proposed 1b-FA16 yielded better results as compared to the existing full adder designs implemented using CNFET. The improvement in power, delay and power delay product was approximately 11%, 9% and 24% respectively. Hence, the proposed circuit implemented using CNFET gives a substantial rate of improvements over the existing circuits.


Modern communication systems rely on Digital Signal Processing (DSP) more than ever before. Improving the speed of FFT computation using high speed multipliers will help to enhance the performance of DSP systems. In this paper a DIT FFT architecture using high performance Modified Vedic multipliers is proposed. Vedic Multipliers offer a more efficient way to perform multiplication on large numbers occupying less area and consuming low power and delay The adders used in the Vedic multipliers are Brent Kung based and multiplexer based adders. The right utilization of these adders at different word lengths helps to achieve an architecture with minimal area and power. Comparative analysis of modified 24×24 Vedic Multiplier with existing Vedic Multiplier shows the improvement in performance with respect to power and area. Proposed FFT design is compared with existing designs for dynamic power consumption and an improvement of 46.93% compared to Tsai’s FFT Design and 59.37% compared to Coelho’s FFT Design is achieved. The entire architecture is implemented on Virtex 7 FPGA and simulated using Xilinx Vivado 2017.4.


Author(s):  
Mona Moradi

Adder core respecting to its various applications in VLSI circuits and<br />systems is considered as the most critical building block in microprocessors,<br />digital signal processors and arithmetic operations. Novel designs of a low<br />power and complexity Current Mode 1-bit Full Adder cell based on<br />CNTFET technology has been presented in this paper. Three major parts<br />construct their structures; 1) the first part that converts current to voltage; 2)<br />threshold detectors (TD); and 3) parallel paths to convey the output currents<br />flow. Adjusting threshold voltages which are significant factor for setting<br />threshold detectors switching point has been achieved by means of CNTFET<br />technology. It would bring significant improvements in adjusting threshold<br />voltages, regarding to its unique characterizations. Simple design, less<br />transistor counts and static power dissipation and better performance<br />comparing previous designs could be considered as some advantages of the<br />novel designs.


2020 ◽  
Vol 8 (6) ◽  
pp. 3383-3386

Multipliers play a significant task in digital signal processing applications and application-specific integrated circuits. Wallace tree multipliers provide a high-speed multiplication process with an area-efficient strategy. It is realized in hardware using full adders and half adders. The optimization of adders can further improve the performance of multipliers. Wallace tree multiplier with modified full adder using NAND gate is proposed to achieve reduced silicon area, high speed and low power consumption. The conventional full adder implemented by XOR, AND, OR gates is replaced by the modified full adder realized using NAND gate. The proposed Wallace tree multiplier includes 544 transistors, while the conventional Wallace tree multiplier has 584 transistors for 4-bit multiplication.


2021 ◽  
Vol 58 (2) ◽  
pp. 813-823
Author(s):  
Swarup Sarkar, Rupsa Roy

An important arithmetic component of “Arithmetic and Logic Unit” or ALU is reconfigured in this paper, known as “Full-Adder-Subtractor”, where an advance low-power, high-speed nano technology “QCA” with electro-spin criterion is used with reversibility and the advancement of multilayer 3D circuitry. In this modern digital world, this selected nano-sized technology is an effective alternative of widely used “CMOS Technology” because all the limitations, mainly limitation due to the presence of high power dissipation at the time of device-density increment in a “CMOS” based integrated circuit, can be optimized by “QCA” nano technology with electro-spin criterion and this technology also supports reversible logic in multilayer 3D platform with less complexity. This paper, primarily presents two novel “QCA” based 3-layered “Adder-Subtractor” designs using the collaboration of multilayer inverter gates, reversible modified 3-input Feynman-Gate and 3-input MG (Majority Gate) with very less cell-complexity, area-occupation, delay and energy-dissipation and high output-strength, temperature-tolerance and accuracy. A clear parametric investigation on presented designs are shown clearly in this paper through a comparative manner with some previous published related structures. Additionally, another parametric-experiment on a novel multibit reversible multilayer “QCA” based “Full-Adder-Subtractor” circuitry using the working phenomenon of “Ripple Carry Adder” (RCA) and multibit subtractor (“ripple borrow subtractor” or RBS) is presented in this proposed work in a proper way and this combination of RCA and multibit subtraction operation converts the proposed circuitry into a hybrid form, which is more effective compare to some other advanced adders in parametric-optimization field.


Sign in / Sign up

Export Citation Format

Share Document