scholarly journals The Adverse Effects of Air Pollution on the Nervous System

2012 ◽  
Vol 2012 ◽  
pp. 1-23 ◽  
Author(s):  
Sermin Genc ◽  
Zeynep Zadeoglulari ◽  
Stefan H. Fuss ◽  
Kursad Genc

Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer’s disease, Parkinson’s disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health.

2020 ◽  
Vol 13 ◽  
pp. 251686572095487
Author(s):  
Adam Schuller ◽  
Luke Montrose

Woodsmoke poses a significant health risk as a growing component of ambient air pollution in the United States. While there is a long history of association between woodsmoke exposure and diseases of the respiratory, circulatory, and cardiovascular systems, recent evidence has linked woodsmoke exposure to cognitive dysfunction, including Alzheimer’s disease dementia. Alzheimer’s disease is a progressive neurodegenerative disorder with largely idiopathic origins and no known cure. Here, we explore the growing body of literature which relates woodsmoke-generated and ambient air pollution particulate matter exposure to Alzheimer’s disease (AD) onset or exacerbation, in the context of an inflammation-centric view of AD. Epigenetic modifications, specifically changes in DNA methylation patterns, are well documented following woodsmoke exposure and have been shown to influence disease-favoring inflammatory cascades, induce oxidative stress, and modulate the immune response in vitro, in vivo, and in humans following exposure to air pollution. Though the current status of the literature does not allow us to draw definitive conclusions linking these events, this review highlights the need for additional work to fill gaps in our understanding of the directionality, causality, and susceptibility throughout the life course.


2021 ◽  
Vol 2 (10) ◽  
pp. 964-976
Author(s):  
Mojtaba Ehsanifar ◽  
Banihashemian SS ◽  
Masoud Ehsanifar

Urban air pollutants exposure is known as a source of neuroinflammation and oxidative stress that causes the Central Nervous System (CNS) and neuropathology disease. Transition metals, Particulate Matter (PM), including PM 2.5 (PM <2.5 μm) and PM 0.1 (PM <0.1μm), nitrogen oxides and ozone are of potent or oxidant capable of producing Reactive Oxygen Species (ROS). Redox-sensitive pathways can be caused by oxidative stress, leading to various biological processes, including inflammation and cell death. The incidence of Alzheimer's Disease (AD) and Parkinson's Disease (PD) and stroke are associated with exposure to air pollution. Some recent findings suggest that urban air pollutants reach the brain in addition to pulmonary and cardiovascular diseases and affect the CNS health too. While the underlying CNS pathology mechanisms induced air pollutants exposure are not well understood, recent studies show that changes in Blood Brain Barrier (BBB) and microglial activation are key components. In this work, we reviewed the new evidence of the mechanisms by which ambient air pollution reach the brain and activate innate immune response as a source of oxidative stress and neuroinflammatory factors.


2020 ◽  
Vol 21 (12) ◽  
pp. 4306 ◽  
Author(s):  
Omar Hahad ◽  
Jos Lelieveld ◽  
Frank Birklein ◽  
Klaus Lieb ◽  
Andreas Daiber ◽  
...  

Exposure to ambient air pollution is a well-established determinant of health and disease. The Lancet Commission on pollution and health concludes that air pollution is the leading environmental cause of global disease and premature death. Indeed, there is a growing body of evidence that links air pollution not only to adverse cardiorespiratory effects but also to increased risk of cerebrovascular and neuropsychiatric disorders. Despite being a relatively new area of investigation, overall, there is mounting recent evidence showing that exposure to multiple air pollutants, in particular to fine particles, may affect the central nervous system (CNS) and brain health, thereby contributing to increased risk of stroke, dementia, Parkinson’s disease, cognitive dysfunction, neurodevelopmental disorders, depression and other related conditions. The underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests inflammation and oxidative stress to be crucial factors in the pathogenesis of air pollution-induced disorders, driven by the enhanced production of proinflammatory mediators and reactive oxygen species in response to exposure to various air pollutants. From a public health perspective, mitigation measures are urgent to reduce the burden of disease and premature mortality from ambient air pollution.


2021 ◽  
Author(s):  
Morufu Raimi ◽  
Timothy Kayode Samson ◽  
Ajayi Bankole Sunday ◽  
Adio Zulkarnaini Olalekan ◽  
Odipe Oluwaseun Emmanuel ◽  
...  

Abstract We can’t stop breathing, but we can do something about the quality of air that we breathe. Clean fresh air is indispensable ingredient for a good life quality. Individuals poses the right towards expecting that the breathed air will not harm people. Thus, fighting air pollution will not only improve health outcomes, productivity, and well-being, it’s also essential toward reducing the emissions of greenhouse gas as well as fighting climate change. For examples, a third of the global population is at risk from unhealthy of ambient air pollutants concentrations, with the loss of approximately 6.4 million healthy-life-years attributed specifically to chronic exposure to ambient particulate matter. Expert panels have consistently rated air pollution as a greater health hazard than water pollution. Pollution of air is the leading source of unexplained and undiagnosed diseases, besides have remained associated with a variety of serious human health risks, and in fact, a threshold has not been established under which these pollutants exert no adverse effects. This study evaluates ambient air quality at major sawmill sites in Ilorin Metropolis, Kwara State, Nigeria. “Measurements of Air pollution were accurately carried out using direct reading, automatic in situ gas monitors; Hand held mobile multi-gas monitor with model AS8900 [Combustible (LEL), and Oxygen (O2)], BLATN with model BR – Smart Series air quality monitor (PM10, Formaldehyde) and air quality multimeter with model B SIDE EET100 (Dust (PM2.5), VOC, Temperature and Relative Humidity)”. The outcomes disclosed among others, the average concentrations of CO, O2 as well as other measured parameters for instance formaldehyde (HcHo) etc., they are also consistently low as well as within acceptable range in terms of National as well as Global monitoring standards for air quality indices. However, there are few exceptions for instance the average volatile organic compounds (VOCs) concentrations, PM2.5, PM10 as well as Combustible (LEL) respectively, which are higher when compared to National and Global standards. This high figure is due to pollutant amount existing in the sawmills air environment resulting from input of influents from activities of the sawmill. However, as a result, air pollution in the city of Ilorin is found to be increasingly polluted and are of major health concern because of their synergistic action. Due to the high evidences and values, it can lead to a remarkable rise in over-all figure of hospital visits/ patients’ admissions with acute respiratory illnesses as soon as air pollutants level remained high. Hence, there is the need for an aggressive control of ambient air pollution.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Natalie M. Johnson ◽  
Aline Rodrigues Hoffmann ◽  
Jonathan C. Behlen ◽  
Carmen Lau ◽  
Drew Pendleton ◽  
...  

Abstract Background Particulate matter (PM), a major component of ambient air pollution, accounts for a substantial burden of diseases and fatality worldwide. Maternal exposure to PM during pregnancy is particularly harmful to children’s health since this is a phase of rapid human growth and development. Method In this review, we synthesize the scientific evidence on adverse health outcomes in children following prenatal exposure to the smallest toxic components, fine (PM2.5) and ultrafine (PM0.1) PM. We highlight the established and emerging findings from epidemiologic studies and experimental models. Results Maternal exposure to fine and ultrafine PM directly and indirectly yields numerous adverse birth outcomes and impacts on children’s respiratory systems, immune status, brain development, and cardiometabolic health. The biological mechanisms underlying adverse effects include direct placental translocation of ultrafine particles, placental and systemic maternal oxidative stress and inflammation elicited by both fine and ultrafine PM, epigenetic changes, and potential endocrine effects that influence long-term health. Conclusion Policies to reduce maternal exposure and health consequences in children should be a high priority. PM2.5 levels are regulated, yet it is recognized that minority and low socioeconomic status groups experience disproportionate exposures. Moreover, PM0.1 levels are not routinely measured or currently regulated. Consequently, preventive strategies that inform neighborhood/regional planning and clinical/nutritional recommendations are needed to mitigate maternal exposure and ultimately protect children’s health.


2021 ◽  
pp. 181-194
Author(s):  
A.E. Nosov ◽  
◽  
A.S. Baydina ◽  
O.Yu. Ustinova ◽  
◽  
...  

Ambient air pollution causes approximately 3.3 million untimely deaths annually (2.1 deaths due to ischemic heart disease and 1.1 million deaths due to stroke). Mortality caused by ambient air pollution is higher than mortality due to such traditional risk factors as smoking, obesity, and elevated dextrose contents in blood. Relative risk of mortality amounts to 1.26 (95 % CI 1.08–1.47) in cities with the highest air pollution against those where air pollution is the lowest. Occupational exposure to various chemical air pollutants can cause more than 1 million untimely deaths all over the world but its contribution to prevalence of cardiovascular diseases has not been determined sufficiently. Aerogenic pollutants are quite variable in their chemical structure and include both particulate matter (PM for short) and gaseous matter. The American Heart Association and the European Society of Cardiology consider PM2.5 to be a risk factor causing cardiovascular diseases. This analytical review presents data on effects produced by aerogenic pollutants on development of cardio-metabolic pathology and population mortality due to vascular and metabolic diseases (arterial hypertension, atherosclerosis and ischemic heart disease, heart rhythm disturbances, and type 2 diabetes mellitus). There are also data on mechanisms of pathogenetic influence exerted by aerogenic pollutants on development of such diseases including generation of anti-inflammatory and oxidative mediators and their release into blood flow; developing imbalance in the autonomic nervous system with prevailing activity of the sympathetic nervous system and disrupted heart rate variability; direct introduction of aerogenic pollutants from the lungs into blood flow with developing direct toxic effects. We have also analyzed literature data on protective effects produced by reduction in ambient air pollution on prevalence of cardiovascular pathology.


Author(s):  
Agnes Maria Lederer ◽  
Per Morten Fredriksen ◽  
Benedicta Ngwenchi Nkeh-Chungag ◽  
Frans Everson ◽  
Hans Strijdom ◽  
...  

Background: Air pollution is a global health concern. PM2.5, a component of ambient air pollution, has been identified by the World Health Organization as one of the pollutants that poses the greatest threat to public health.Cardiovascular health effects have been extensively documented and these effects are still researched. Aims: To provide an overview of recent literature regarding air pollution-associated cardiovascular morbidity and mortality in humans. Additionally, potential mechanisms through which air pollutants affect the cardiovascular system are discussed based on human, and additional animal studies. Methodology: We used the strategy of a narrative review to summarize the scientific literature of studies that were published in the last 7 years. Searches were carried out on PubMed and Web of Science using predefined search queries. Results and discussion: We obtained an initial set of 800 publications that were filtered to 78 publications that were relevant to include in this review. Analysis of the literature showed significant associations between air pollution, especially PM2.5, and the risk of elevated blood pressure (BP), acute coronary syndrome, myocardial infarction (MI), cardiac arrhythmia and heart failure (HF), respectively. Prominent mechanisms that underlie the adverse effects of air pollution include oxidative stress, systemic inflammation, endothelial dysfunction, autonomic imbalance and thrombogenicity. Conclusions: The current review underscores the relevance of air pollution as a global health concern that affects cardiovascular health. More rigorous standardsare needed to reduce the cardiovascular disease burden imposed by air pollution. Continued research on the health impact of air pollution is needed to provide further insight.


Author(s):  
Shandiz Moslehi ◽  
Hesam Seyedin ◽  
Mohsen Dowlati ◽  
Fazeleh Sadat Sakhaei

Natural disasters are always among the main problems and challenges facing societies. Earthquakes had many adverse effects on human life, causing mortality, morbidity, and economical, psychological, and environmental damages. Tehran is one of the most vulnerable regions for disasters, especially earthquake due. In recent decades, ambient air pollution represents one of the most environmental risks to health in Tehran. One of the main factors increasing the concentration of air pollutants is vehicles. After the earthquake, people left their homes and stayed into their cars until morning. Therefore, due to the pollution caused by leaving the cars on, the concentration of pollutants increased and the caused a greater number of deaths attributed to air pollution.


2020 ◽  
Vol 10 (1) ◽  
pp. 77
Author(s):  
Sebastian Majewski ◽  
Wojciech J. Piotrowski

Air pollution is a major environmental risk to health and a global public health concern. In 2016, according to the World Health Organization (WHO), ambient air pollution in cities and rural areas was estimated to cause 4.2 million premature deaths. It is estimated that around 91% of the world’s population lives in places where air pollution exceeds the limits recommended by the WHO. Sources of air pollution are multiple and context-specific. Air pollution exposures are established risk factors for development and adverse health outcomes in many respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), or lung cancer. However, possible associations between air pollution and idiopathic pulmonary fibrosis (IPF) have not been adequately studied and air pollution seems to be an underrecognized risk factor for IPF. This narrative review describes potential mechanisms triggered by ambient air pollution and their possible roles in the initiation of the pathogenic process and adverse health effects in IPF. Additionally, we summarize the most current research evidence from the clinical studies supporting links between air pollution and IPF.


2018 ◽  
Vol 24 (1) ◽  
Author(s):  
V. S. CHAUHAN ◽  
BHANUMATI SINGH ◽  
SHREE GANESH ◽  
JAMSHED ZAIDI

Studies on air pollution in large cities of India showed that ambient air pollution concentrations are at such levels where serious health effects are possible. This paper presents overview on the status of air quality index (AQI) of Jhansi city by using multivariate statistical techniques. This base line data can help governmental and non-governmental organizations for the management of air pollution.


Sign in / Sign up

Export Citation Format

Share Document