scholarly journals Comparing Astrocytic Gap Junction of Genetic Absence Epileptic Rats with Control Rats: An Experimental Study

Author(s):  
Safiye Cavdar ◽  
Büşra Köse ◽  
İlknur Sur ◽  
Mazhar Özkan

Abstract The synchronization of astrocytes via gap junctions (GJ) is a crucial mechanism in epileptic conditions, contributing to the synchronization of the neuronal networks. Little is known about the endogenous response of GJ in genetic absence epileptic animal models. We evaluated and quantified astrocyte GJ protein connexin 30 (Cx30) and 43 (Cx43) in the somatosensory cortex (SSCx), ventrobasal (VB), centromedian (CM), lateral geniculate (LGN) and thalamic reticular (TRN) nuclei of thalamus of genetic absence epilepsy rats from Strasbourg (GAERS), Wistar albino glaxo rats from Rijswijk (WAG/Rij) and control Wistar animals using immunohistochemistry and Western Blot. The Cx30 and Cx43 immunopositive astrocytes in per unite area were quantified for each region of the three animal strains. Further, Cx30 and Cx43 Western Blot was applied to the tissue samples from the same regions of the three strain. The number of Cx30 immunopositive astrocytes showed significant increase in both GAERS and WAG/Rij compared to control Wistar in all brain regions studied except LGN of WAG/Rij animals. Furthermore, Cx43 in both GAERS and WAG/Rij showed significant increase in SSCx, VB and TRN. The percentage of dual expression of Cx30 and Cx43 in the same astrocyte ranged between 17-100% for the 5 brain regions of the 3 animal strains studied. The protein expression of both Cx30 and Cx43 in the two epileptic strain showed an increase compared to Wistar control animals. The significant increase in the astrocytic GJ proteins Cx30 and Cx43 and the differences in the dual expression of Cx30 and Cx43 in the genetically absence epileptic strains compared to control animals may suggest that astrocytic Cx’s may be involved in the mechanism of absence epilepsy. Increased number of astrocytic Cx’s in GAERS and WAG/Rij may represent a compensatory response of the thalamocortical circuitry to the absence seizures or may be related to the production of absence seizures.

VASA ◽  
2014 ◽  
Vol 43 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Tao Shang ◽  
Feng Ran ◽  
Qian Qiao ◽  
Zhao Liu ◽  
Chang-Jian Liu

Background: The purpose of this study was to determine whether myeloid differentiation factor88-dependent Toll-Like Receptor-4 (TLR-4) signaling contributed to the inhibition of abdominal aortic aneurysm (AAA) by Tanshinone IIA (Tan IIA). Materials and methods: Male Sprague-Dawley rats (n = 12 / group) were randomly distributed into three groups: Tan IIA, control, and sham. The rats from Tan IIA and control groups under-went intra-aortic elastase perfusion to induce AAAs, and those in the sham group were perfused with saline. Only the Tan IIA group received Tan IIA (2 mg / rat / d). Aortic tissue samples were harvested at 24 d after perfusion and evaluated using reverse transcriptase-polymerase chain reaction, Western blot, immunohistochemistry and immunofluorescence. Results: The over-expression of Toll-Like Receptor-4 (TLR-4), Myeloid Differentiation factor 88 (MyD88), Phosphorylated Nuclear Factor κB (pNF-κB) and Phosphorylated IκBα (pIκBα) induced by elastase perfusion were significantly decreased by Tan IIA treatment. Conclusions: Tan IIA attenuates elastase-induced AAA in rats possibly via the inhibition of MyD88-dependent TLR-4 signaling, which may be one potential explanation of why Tan IIA inhibits AAA development through multiple effects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huoyin Zhang ◽  
Shiyunmeng Zhang ◽  
Jiachen Lu ◽  
Yi Lei ◽  
Hong Li

AbstractPrevious studies in humans have shown that brain regions activating social exclusion overlap with those related to attention. However, in the context of social exclusion, how does behavioral monitoring affect individual behavior? In this study, we used the Cyberball game to induce the social exclusion effect in a group of participants. To explore the influence of social exclusion on the attention network, we administered the Attention Network Test (ANT) and compared results for the three subsystems of the attention network (orienting, alerting, and executive control) between exclusion (N = 60) and inclusion (N = 60) groups. Compared with the inclusion group, the exclusion group showed shorter overall response time and better executive control performance, but no significant differences in orienting or alerting. The excluded individuals showed a stronger ability to detect and control conflicts. It appears that social exclusion does not always exert a negative influence on individuals. In future research, attention to network can be used as indicators of social exclusion. This may further reveal how social exclusion affects individuals' psychosomatic mechanisms.


2020 ◽  
Vol 19 ◽  
pp. 153303382098078
Author(s):  
Yanjuan Guo ◽  
Nannan Zhao ◽  
Jianli Zhou ◽  
Jianxin Dong ◽  
Xing Wang

Objective: The present study aimed to explore the function of sirtuin 2 (SIRT2) on cell proliferation, apoptosis, rat sarcoma virus (RAS)/ extracellular signal-regulated kinase (ERK) pathway in endometrial cancer (EC). Methods: SIRT2 expression in human EC cell lines and human endometrial (uterine) epithelial cell (HEEC) line was assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot. SIRT2 knock-down and control knock-down plasmids were transfected into HEC1A cells, respectively; SIRT2 overexpression and control overexpression plasmids were transfected into Ishikawa cells, respectively. After transfection, SIRT2, HRas proto-oncogene, GTPase (HRAS) expressions were evaluated by RT-qPCR and western blot. ERK and phosphorylated ERK (pERK) expressions were evaluated by western blot. Meanwhile, cell proliferation and cell apoptosis were measured. Results: Compared to normal HEEC cell line, SIRT2 mRNA and protein expressions were increased in most human EC cell lines (including HEC1A, RL952 and AN3CA), while were similar in Ishikawa cell line. In HEC1A cells, SIRT2 knock-down decreased cell proliferation but increased apoptosis. In Ishikawa cells, SIRT2 overexpression induced cell proliferation but inhibited apoptosis. For RAS/ERK pathway, SIRT2 knock-down reduced HRAS and inactivated pERK in HEC1A cells, whereas SIRT2 overexpression increased HRAS and activated pERK in Ishikawa cells, suggesting that SIRT2 was implicated in the regulation of RAS/ERK pathway in EC cells. Conclusion: SIRT2 contributes to the EC tumorigenesis, which appears as a potential therapeutic target.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Kimberly F. Young ◽  
Rebeca Gardner ◽  
Victoria Sariana ◽  
Susan A. Whitman ◽  
Mitchell J. Bartlett ◽  
...  

AbstractBackgroundIschemic stroke is an acquired brain injury with gender-dependent outcomes. A persistent obstacle in understanding the sex-specific neuroinflammatory contributions to ischemic brain injury is distinguishing between resident microglia and infiltrating macrophages—both phagocytes—and determining cell population-specific contributions to injury evolution and recovery processes. Our purpose was to identify microglial and macrophage populations regulated by ischemic stroke using morphology analysis and the presence of microglia transmembrane protein 119 (TMEM119). Second, we examined sex and menopause differences in microglia/macrophage cell populations after an ischemic stroke.MethodsMale and female, premenopausal and postmenopausal, mice underwent either 60 min of middle cerebral artery occlusion and 24 h of reperfusion or sham surgery. The accelerated ovarian failure model was used to model postmenopause. Brain tissue was collected to quantify the infarct area and for immunohistochemistry and western blot methods. Ionized calcium-binding adapter molecule, TMEM119, and confocal microscopy were used to analyze the microglia morphology and TMEM119 area in the ipsilateral brain regions. Western blot was used to quantify protein quantity.ResultsPost-stroke injury is increased in male and postmenopause female mice vs. premenopause female mice (p< 0.05) with differences primarily occurring in the caudal sections. After stroke, the microglia underwent a region, but not sex group, dependent transformation into less ramified cells (p< 0.0001). However, the number of phagocytic microglia was increased in distal ipsilateral regions of postmenopausal mice vs. the other sex groups (p< 0.05). The number of TMEM119-positive cells was decreased in proximity to the infarct (p< 0.0001) but without a sex group effect. Two key findings prevented distinguishing microglia from systemic macrophages. First, morphological data were not congruent with TMEM119 immunofluorescence data. Cells with severely decreased TMEM119 immunofluorescence were ramified, a distinguishing microglia characteristic. Second, whereas the TMEM119 immunofluorescence area decreased in proximity to the infarcted area, the TMEM119 protein quantity was unchanged in the ipsilateral hemisphere regions using western blot methods.ConclusionsOur findings suggest that TMEM119 is not a stable microglia marker in male and female mice in the context of ischemic stroke. Until TMEM119 function in the brain is elucidated, its use to distinguish between cell populations following brain injury with cell infiltration is cautioned.


2021 ◽  
Vol 11 (7) ◽  
pp. 1327-1332
Author(s):  
Long Zhou ◽  
Kui Wang ◽  
Meixia Liu ◽  
Wen Wei ◽  
Liu Liu ◽  
...  

NF-κB activation and its abnormal expression are involved in the progression of glioma. miRNA plays a crucial role in bone diseases. The role of NF-κB is becoming more and more important. The purpose of this study is to explore the mechanism by how miR-1 regulates NF-κB signaling. C57 glioma mouse models were divided into osteoporosis (OP) group and control group. qPCR was used to measure miR-1 levels in OP and control mice. Bone marrow mesenchymal stem cells (BMSCs) were cultured and transfected with miR-1 specific siRNA to establish miR-1 knockout cell model followed by analysis of cell apoptosis, expression of NF-κB signaling molecules by western blot. qPCR results showed that miR-1 levels in OP mice were significantly reduced compared to control mice. A large number of siRNA particles were observed in transfected BMSCs under a fluorescence microscope. qPCR results showed that siRNA transfection significantly suppressed miR-1, indicating successful transfection. Flow cytometry revealed significant differences in cell apoptosis between miR-1 siRNA group and the NC group. Western blot indicated miR-1 promoted BMSCs differentiation via NF-κB mediated up-regulation of ALP activity. The expression of miR-1 is low in BMSCs of mice with glioma. In addition, BMSCs differentiation is enhanced by NF-κB activation via up-regulating miR-1.


2020 ◽  
Vol 21 (2) ◽  
pp. 419 ◽  
Author(s):  
Katrien Smits ◽  
Yannick Gansemans ◽  
Laurentijn Tilleman ◽  
Filip Van Nieuwerburgh ◽  
Margot Van De Velde ◽  
...  

The signal for maternal recognition of pregnancy (MRP) has still not been identified in the horse. High-throughput molecular biology at the embryo–maternal interface has substantially contributed to the knowledge on pathways affected during MRP, but an integrated study in which proteomics, transcriptomics and miRNA expression can be linked directly is currently lacking. The aim of this study was to provide such analysis. Endometrial biopsies, uterine fluid, embryonic tissues, and yolk sac fluid were collected 13 days after ovulation during pregnant and control cycles from the same mares. Micro-RNA-Sequencing was performed on all collected samples, mRNA-Sequencing on the same tissue samples and mass spectrometry was conducted previously on the same fluid samples. Differential expression of miRNA, mRNA and proteins showed high conformity with literature and confirmed involvement in pregnancy establishment, embryo quality, steroid synthesis and prostaglandin regulation, but the link between differential miRNAs and their targets was limited and did not indicate the identity of an unequivocal signal for MRP in the horse. Differential expression at the embryo–maternal interface was prominent, highlighting a potential role of miRNAs in embryo–maternal communication during early pregnancy in the horse. These data provide a strong basis for future targeted studies.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Erieg A. Mohamed ◽  
Despina M. Bordean ◽  
Isidora Radulov ◽  
Răzvan F. Moruzi ◽  
Călin I. Hulea ◽  
...  

Background. Medications to reduce oxidative stress are preventing cellular damage associated with hyperlipidemia. In this regard, statins (e.g., atorvastatin) act primarily by decrease in low-density lipoprotein-c but, in the last decade, hepatotoxicity, associated with liver injuries in the next months after treatments’ initiation, was reported. In this case, associated phytotherapy can be a solution. Purpose. To investigate the antioxidant potential and response to free radicals, in the case of hyperlipidemic rats treated with atorvastatin. Sea buckthorn (Hippophae rhamnoides) and a grape extract (antioxivita) efficiency in the oxidative stress were investigated, also being ascertained the rats’ organs cytoarchitecture. Methods. Eighty-four hyperlipidemic Wistar rats were divided into seven groups and orally treated as follows: ATS, atorvastatin (20 mg/kg·bw); ATS + Hr, atorvastatin + H. rhamnoides; ATS + Aox, atorvastatin + grape extract; Hr, H. rhamnoides; and Aox, grape extract (both as 100 mg/kg·bw). HFD and Control received high fat diet and normal fodder only. After two and six months, respectively, rats were euthanized and the heart, liver, and kidneys were gathered. The tissue samples were prepared by homogenization of 0.5 g tissue, in ethanol, kept for 48 hours at 4°C–10°C and then filtered, in order to assess organs’ cytoarchitecture and the TAC’s values (by using cupric ion reducing antioxidant capacity (CUPRAC) assay). The test tubes were incubated, at room temperature, for 30 minutes, and then analyzed using a spectrophotometer at 450–650 nm. Results. The statistics (ANOVA) revealed that sea buckthorn diminished notably (p<0.001) the oxidative stress in the heart, liver, and kidney. After six months, the TAC’s reduced levels for the heart were significant (p<0.001) in ATS + Aox. In the case of histology, the liver’s cytoarchitecture in ATS revealed abnormal cytoarchitecture. In ATS + Hr, ATS + Aox, Hr, and Aox, cell regeneration improved in different stages, especially for ATS + Hr and ATS + Aox, in comparison with HFD, which exhibited fat degeneration. Kidney’s cytoarchitecture revealed cellular healing, especially in ATS + Hr and ATS + Aox.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1721 ◽  
Author(s):  
Cezary Grochowski ◽  
Eliza Blicharska ◽  
Jacek Bogucki ◽  
Jędrzej Proch ◽  
Aleksandra Mierzwińska ◽  
...  

Introduction: Alcohol overuse may be related to increased aluminum (Al) exposure, the brain accumulation of which contributes to dementia. However, some reports indicate that silicon (Si) may have a protective role over Al-induced toxicity. Still, no study has ever explored the brain content of Al and Si in alcoholic use disorder (AUD). Materials and methods: To fill this gap, the present study employed inductively coupled plasma optical emission spectrometry to investigate levels of Al and Si in 10 brain regions and in the liver of AUD patients (n = 31) and control (n = 32) post-mortem. Results: Al content was detected only in AUD patients at mean ± SD total brain content of 1.59 ± 1.19 mg/kg, with the highest levels in the thalamus (4.05 ± 12.7 mg/kg, FTH), inferior longitudinal fasciculus (3.48 ± 9.67 mg/kg, ILF), insula (2.41 ± 4.10 mg/kg) and superior longitudinal fasciculus (1.08 ± 2.30 mg/kg). Si content displayed no difference between AUD and control, except for FTH. Positive inter-region correlations between the content of both elements were identified in the cingulate cortex, hippocampus, and ILF. Conclusions: The findings of this study suggest that AUD patients may potentially be prone to Al-induced neurodegeneration in their brain—although this hypothesis requires further exploration.


2001 ◽  
Vol 47 (4) ◽  
pp. 722-725 ◽  
Author(s):  
Raneem O Salem ◽  
Majed A Refaai ◽  
Joanne E Cluette-Brown ◽  
Joshua W Russo ◽  
Michael Laposata

Abstract Background: Fatty acid ethyl esters (FAEEs) are nonoxidative metabolites of ethanol. FAEEs are found in liver, pancreas, and adipose tissues up to 24 h after consumption of ethanol, and on that basis, they are potentially useful markers for ethanol intake. In this study with rats, we investigated the efficacy of using FAEEs in liver and in adipose tissue as postmortem markers for premortem ethanol ingestion. Methods: An animal study was conducted in which test rats received injections of ethanol and control rats received injections of normal saline. The rats were killed 2 h after the injections. The bodies of the animals were stored at 4 °C up to 12 h, and samples of liver and adipose tissues were collected at different time intervals and processed for FAEE quantification. In another set of experiments, the rats received injections and were killed as described above, but bodies of animals from both groups were stored at 4, 25, or 37 °C for up to 72 h, and liver samples were collected and processed for FAEE quantification. Results: FAEEs were detected up to 12 h after death in liver and adipose tissue samples from the bodies of ethanol-treated animals stored at 4 °C; negligible amounts were detected in the bodies of animals that received normal saline. Adipose tissues contained higher amounts of FAEEs than liver, as well as more species: eight FAEE species in adipose tissue and five in liver tissue. Higher concentrations of FAEEs were detected in livers of treated animals stored at 25 °C for up to 48 h than in livers of controls stored under the same conditions. Conclusions: For at least 12 h after death, FAEEs in liver and adipose tissues are useful postmortem markers of premortem ethanol ingestion.


Sign in / Sign up

Export Citation Format

Share Document