scholarly journals Nanoparticles as Antimicrobial Agents and Drug Delivery Systems - A Review

Author(s):  
Jagadish Kumar Suluvoy ◽  
P. Levin Anbu Gomez ◽  
T. Jesse Joel ◽  
Neha Toppo ◽  
Dhanu P. Karthikeyan ◽  
...  

The world is facing major issues related to antibiotic resistance, specific drugs targeting and its side effects. Such obstacles can be rectified by nanotechnology as they have essential characteristics with smaller size, target specificity, easy deliverable with lesser side effects. The prime nature of the nanoparticles are, it can probe into the cell wall of the pathogenic microbes and even have the capacity to intrude into cellular pathways. Nanoparticles themselves are capable of destroying unwanted foreign particles or toxic cells, which enter into our bodies. Nanoparticles can be treated as carriers, in which they combine with specific drugs and deliver to target specific cells with lesser side effects. Nanoparticles are used as a drug delivery agent for various kinds of diseases related to cancer. Nanoparticles with drugs increase the antibiotic release at the different target sites and these nanoparticles have a great tendency to deliver a large number of drugs to a cell. In this current review, we discuss the bright future of NPs as drug delivery agents as it can overcome all conventional problems.

2022 ◽  
Author(s):  
Stephen Oloninefa ◽  
Abalaka Moses Enemaduku ◽  
Daniyan Safiya Yahaya ◽  
Mann Abdullahi

The menace of drug resistance, bioavailability and drug delivery to the target sites has motivated researchers to search for new antimicrobial agents from medicinal plants and subsequently use them for the biosynthesis of silver nanoparticles for effective killing of bacteria challenging to kill using crude extracts. The biosynthesis of silver nanoparticles was done using aqueous extract (AQE) of E<i>uphorbia heterophylla</i>, while characterization and the killing rate of conjugated silver nanoparticles (CA<sub>g</sub>NP<sub>s</sub>) were carried out using standard methods. The maximum wavelength obtained for CA<sub>g</sub>NP<sub>s</sub> was 410.33 nm, while the size distribution was 237.8 d.nm. The Fourier Transform Infra-Red result showed O-H (3308.94 cm<sup>-1</sup>), which is responsible for stabilising and reducing silver ions, while the Transmission Electron Microscopy revealed the presence of monodispersed spherical shapes CA<sub>g</sub>NP<sub>s</sub>. The Energy Dispersive Spectroscopy confirmed the presence of silver. There were reductions in the clinical bacterial isolates exposed to CA<sub>g</sub>NP<sub>s</sub> as the exposure time increased. <i>Escherichia coli</i> was killed between 6-7 h while<i> Salmonella typhimurium</i> was killed at the seven has the value of 0.00 log<sub>10</sub> CFU/ml was recorded respectively. However, there were increments in the populations of clinical bacterial isolates in control as the time of exposure increased. Therefore, the study suggests that the CA<sub>g</sub>NP<sub>s</sub> exhibit intense antimicrobial activity and the potential to be developed as an alternative agent to treat bacterial infections, curb multidrug-resistant bacterial infection, and promote speedy drug delivery to the target sites.


2020 ◽  
Vol 26 (37) ◽  
pp. 4721-4737 ◽  
Author(s):  
Bhumika Kumar ◽  
Mukesh Pandey ◽  
Faheem H. Pottoo ◽  
Faizana Fayaz ◽  
Anjali Sharma ◽  
...  

Parkinson’s disease is one of the most severe progressive neurodegenerative disorders, having a mortifying effect on the health of millions of people around the globe. The neural cells producing dopamine in the substantia nigra of the brain die out. This leads to symptoms like hypokinesia, rigidity, bradykinesia, and rest tremor. Parkinsonism cannot be cured, but the symptoms can be reduced with the intervention of medicinal drugs, surgical treatments, and physical therapies. Delivering drugs to the brain for treating Parkinson’s disease is very challenging. The blood-brain barrier acts as a highly selective semi-permeable barrier, which refrains the drug from reaching the brain. Conventional drug delivery systems used for Parkinson’s disease do not readily cross the blood barrier and further lead to several side-effects. Recent advancements in drug delivery technologies have facilitated drug delivery to the brain without flooding the bloodstream and by directly targeting the neurons. In the era of Nanotherapeutics, liposomes are an efficient drug delivery option for brain targeting. Liposomes facilitate the passage of drugs across the blood-brain barrier, enhances the efficacy of the drugs, and minimize the side effects related to it. The review aims at providing a broad updated view of the liposomes, which can be used for targeting Parkinson’s disease.


2019 ◽  
Vol 25 (34) ◽  
pp. 3608-3619 ◽  
Author(s):  
Uzma Arif ◽  
Sajjad Haider ◽  
Adnan Haider ◽  
Naeem Khan ◽  
Abdulaziz A. Alghyamah ◽  
...  

Background: Biocompatible polymers are gaining great interest in the field of biomedical applications. The term biocompatibility refers to the suitability of a polymer to body and body fluids exposure. Biocompatible polymers are both synthetic (man-made) and natural and aid in the close vicinity of a living system or work in intimacy with living cells. These are used to gauge, treat, boost, or substitute any tissue, organ or function of the body. A biocompatible polymer improves body functions without altering its normal functioning and triggering allergies or other side effects. It encompasses advances in tissue culture, tissue scaffolds, implantation, artificial grafts, wound fabrication, controlled drug delivery, bone filler material, etc. Objectives: This review provides an insight into the remarkable contribution made by some well-known biopolymers such as polylactic-co-glycolic acid, poly(ε-caprolactone) (PCL), polyLactic Acid, poly(3- hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), Chitosan and Cellulose in the therapeutic measure for many biomedical applications. Methods: : Various techniques and methods have made biopolymers more significant in the biomedical fields such as augmentation (replaced petroleum based polymers), film processing, injection modeling, blow molding techniques, controlled / implantable drug delivery devices, biological grafting, nano technology, tissue engineering etc. Results: The fore mentioned techniques and other advanced techniques have resulted in improved biocompatibility, nontoxicity, renewability, mild processing conditions, health condition, reduced immunological reactions and minimized side effects that would occur if synthetic polymers are used in a host cell. Conclusion: Biopolymers have brought effective and attainable targets in pharmaceutics and therapeutics. There are huge numbers of biopolymers reported in the literature that has been used effectively and extensively.


2020 ◽  
Vol 21 (11) ◽  
pp. 1084-1098
Author(s):  
Fengqian Chen ◽  
Yunzhen Shi ◽  
Jinming Zhang ◽  
Qi Liu

This review summarizes the epigenetic mechanisms of deoxyribonucleic acid (DNA) methylation, histone modifications in cancer and the epigenetic modifications in cancer therapy. Due to their undesired side effects, the use of epigenetic drugs as chemo-drugs in cancer therapies is limited. The drug delivery system opens a door for minimizing these side effects and achieving greater therapeutic benefits. The limitations of current epigenetic therapies in clinical cancer treatment and the advantages of using drug delivery systems for epigenetic agents are also discussed. Combining drug delivery systems with epigenetic therapy is a promising approach to reaching a high therapeutic index and minimizing the side effects.


2020 ◽  
Vol 20 (11) ◽  
pp. 1288-1299
Author(s):  
Paromita Kundu ◽  
Deepika Singh ◽  
Abhalaxmi Singh ◽  
Sanjeeb K. Sahoo

The panorama of cancer treatment has taken a considerable leap over the last decade with the advancement in the upcoming novel therapies combined with modern diagnostics. Nanotheranostics is an emerging science that holds tremendous potential as a contrivance by integrating therapy and imaging in a single probe for cancer diagnosis and treatment thus offering the advantage like tumor-specific drug delivery and at the same time reduced side effects to normal tissues. The recent surge in nanomedicine research has also paved the way for multimodal theranostic nanoprobe towards personalized therapy through interaction with a specific biological system. This review presents an overview of the nano theranostics approach in cancer management and a series of different nanomaterials used in theranostics and the possible challenges with future directions.


2020 ◽  
Vol 14 (4) ◽  
pp. 351-359
Author(s):  
Shubham Shrestha ◽  
Sankha Bhattacharya

Drug delivery for a long time has been a major problem in the pharmaceutical field. The development of a new Nano-carrier system called nanosponge has shown the potential to solve the problem. Nanosponge has a porous structure and can entrap the drug in it. It can carry both hydrophilic and hydrophobic drugs. They also provide controlled release of the drugs and can also protect various substances from degradation. Nanosponge can increase the solubility of drugs and can also be formulated into an oral, topical and parenteral dosage form. The current review explores different preparation techniques, characterization parameters, as well as various applications of nanosponge. Various patents related to nanosponge drug delivery system have been discussed in this study.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1031
Author(s):  
Umut Toprak ◽  
Cansu Doğan ◽  
Dwayne Hegedus

Calcium (Ca2+) homeostasis is vital for insect development and metabolism, and the endoplasmic reticulum (ER) is a major intracellular reservoir for Ca2+. The inositol 1,4,5- triphosphate receptor (IP3R) and ryanodine receptor (RyR) are large homotetrameric channels associated with the ER and serve as two major actors in ER-derived Ca2+ supply. Most of the knowledge on these receptors derives from mammalian systems that possess three genes for each receptor. These studies have inspired work on synonymous receptors in insects, which encode a single IP3R and RyR. In the current review, we focus on a fundamental, common question: “why do insect cells possess two Ca2+ channel receptors in the ER?”. Through a comparative approach, this review covers the discovery of RyRs and IP3Rs, examines their structures/functions, the pathways that they interact with, and their potential as target sites in pest control. Although insects RyRs and IP3Rs share structural similarities, they are phylogenetically distinct, have their own structural organization, regulatory mechanisms, and expression patterns, which explains their functional distinction. Nevertheless, both have great potential as target sites in pest control, with RyRs currently being targeted by commercial insecticide, the diamides.


Author(s):  
Oren Levy ◽  
Veit Rothhammer ◽  
Ivan Mascanfroni ◽  
Zhixiang Tong ◽  
Rui Kuai ◽  
...  

2021 ◽  
Vol 22 (4) ◽  
pp. 2050
Author(s):  
Lukas Hofmann ◽  
Melanie Hirsch ◽  
Sharon Ruthstein

Thirty-five thousand people die as a result of more than 2.8 million antibiotic-resistant infections in the United States of America per year. Pseudomonas aeruginosa (P. aeruginosa) is classified a serious threat, the second-highest threat category of the U.S. Department of Health and Human Services. Among others, the World Health Organization (WHO) encourages the discovery and development of novel antibiotic classes with new targets and mechanisms of action without cross-resistance to existing classes. To find potential new target sites in pathogenic bacteria, such as P. aeruginosa, it is inevitable to fully understand the molecular mechanism of homeostasis, metabolism, regulation, growth, and resistances thereof. P. aeruginosa maintains a sophisticated copper defense cascade comprising three stages, resembling those of public safety organizations. These stages include copper scavenging, first responder, and second responder. Similar mechanisms are found in numerous pathogens. Here we compare the copper-dependent transcription regulators cueR and copRS of Escherichia coli (E. coli) and P. aeruginosa. Further, phylogenetic analysis and structural modelling of mexPQ-opmE reveal that this efflux pump is unlikely to be involved in the copper export of P. aeruginosa. Altogether, we present current understandings of the copper homeostasis in P. aeruginosa and potential new target sites for antimicrobial agents or a combinatorial drug regimen in the fight against multidrug resistant pathogens.


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1379 ◽  
Author(s):  
Sarah Stewart ◽  
Juan Domínguez-Robles ◽  
Ryan Donnelly ◽  
Eneko Larrañeta

The oral route is a popular and convenient means of drug delivery. However, despite its advantages, it also has challenges. Many drugs are not suitable for oral delivery due to: first pass metabolism; less than ideal properties; and side-effects of treatment. Additionally, oral delivery relies heavily on patient compliance. Implantable drug delivery devices are an alternative system that can achieve effective delivery with lower drug concentrations, and as a result, minimise side-effects whilst increasing patient compliance. This article gives an overview of classification of these drug delivery devices; the mechanism of drug release; the materials used for manufacture; the various methods of manufacture; and examples of clinical applications of implantable drug delivery devices.


Sign in / Sign up

Export Citation Format

Share Document