scholarly journals KCNMB2-AS1 Promotes Bladder Cancer Progression Through Sponging miR-374a-3p to Upregulate S100A10

2021 ◽  
Vol 12 ◽  
Author(s):  
Jianhua Zhu ◽  
Yan Huang ◽  
Yong Zhang ◽  
Rongfu Huang ◽  
Chunmei Huang

Long non-coding RNAs (lncRNAs) have been reported to play a crucial role in the pathogenesis of numerous cancers. However, the function of lncRNA KCNMB2-AS1 in bladder cancer (BC) remains unclear. In the present study, we aimed to explore the role and underlying mechanisms of KCNMB2-AS1 in bladder cancer progression. We found that lncRNA KCNMB2-AS1 was significantly upregulated both in BC tissues and cell lines, the expression level was highly correlated with pathological TNM stage. Functionally, knockdown of lncRNA KCNMB2-AS1 dramatically inhibited the proliferation, migration, and invasion and of BC cells in vitro, and suppressed tumor growth in vivo. Mechanistically, lncRNA KCNMB2-AS1 could function as a competitive endogenous RNA (ceRNA) through direct sponging miR-374a-3p, which regulated the expression of S100A10. In conclusion, our results demonstrated that lncRNA KCNMB2-AS1 can promote the progression of bladder cancer through regulation of miR-374a-3p/S100A10.

2016 ◽  
Vol 36 (3) ◽  
Author(s):  
Longci Sun ◽  
Hanbing Xue ◽  
Chunhui Jiang ◽  
Hong Zhou ◽  
Lei Gu ◽  
...  

This article aims to find the key long non-coding RNAs (LncRNAs) associated with colorectal cancer (CRC) and to study its biological functions in colorectal cancer progression. Our study has shown that upregulated LncRNA DQ786243 can regulate cell proliferation, cell cycle progression, cell apoptosis, migration, and invasion in CRC cells. Xenograft experiments confirmed that the growth of xenograft tumors formed by CRC cells was suppressed after silencing LncRNA DQ786243 expression. In conclusion, our study suggests that LncRNA DQ786243 is an oncogene that promotes tumor progression and leads us to propose that LncRNAs may serve as key regulatory hubs in CRC progression.


2020 ◽  
Author(s):  
Sisi Wei ◽  
Shiping Sun ◽  
Xinliang Zhou ◽  
Cong Zhang ◽  
Xiaoya Li ◽  
...  

Abstract A substantial fraction of transcripts are known as long noncoding RNAs (lncRNAs), and these transcripts play pivotal roles in the development of cancer. However, little information has been published regarding the functions of lncRNAs in oesophageal squamous cell carcinoma (ESCC) and the underlying mechanisms. In our previous studies, we demonstrated that small nucleolar RNA host gene 5 (SNHG5), a known lncRNA, is dysregulated in gastric cancer (GC). In this study, we explored the expression and function of SNHG5 in development of ESCC. SNHG5 was found to be downregulated in human ESCC tissues and cell lines, and this downregulation was associated with cancer progression, clinical outcomes and survival rates of ESCC patients. Furthermore, we also found that overexpression of SNHG5 significantly inhibited the proliferation, migration and invasion of ESCC cells in vivo and in vitro. Notably, we found that metastasis-associated protein 2 (MTA2) was pulled down by SNHG5 in ESCC cells using RNA pulldown assay. We also found that SNHG5 reversed the epithelial–mesenchymal transition by interacting with MTA2. In addition, overexpression of SNHG5 downregulated the transcription of MTA2 and caused its ubiquitin-mediated degradation. Thus, overexpression of MTA2 partially abrogated the effect of SNHG5 in ESCC cell lines. Furthermore, we found that MTA2 mRNA expression was significantly elevated in ESCC specimens, and a negative correlation between SNHG5 and MTA2 expression was detected. Overall, this study demonstrated, for the first time, that SNHG5-regulated MTA2 functions as an important player in the progression of ESCC and provide a new potential therapeutic strategy for ESCC.


Author(s):  
Shuilian Wu ◽  
Jialei Yang ◽  
Haotian Xu ◽  
Xin Wang ◽  
Ruirui Zhang ◽  
...  

AbstractExtensive research confirmed that circRNA can play a regulatory role in various stages of tumors by interacting with various molecules. Identifying the differentially expressed circRNA in bladder cancer and exploring its regulatory mechanism on bladder cancer progression are urgent. In this study, we screened out a circRNA-circGLIS3 with a significant upregulation trend in both bladder cancer tissues and cells. Bioinformatics prediction results showed that circGLIS3 may be involved in multiple tumor-related pathways. Function gain and loss experiments verified circGLIS3 can affect the proliferation, migration, and invasion of bladder cancer cells in vitro. Moreover, silencing circGLIS3 inhibited bladder cancer cell growth in vivo. Subsequent research results indicated circGLIS3 regulated the expression of cyclin D1, a cell cycle–related protein, and cell cycle progression. Mechanically, circGLIS3 upregulates the expression of SKP1 by adsorbing miR-1273f and then promotes cyclin D1 expression, ultimately promoting the proliferation of bladder cancer cells. In summary, our study indicates that circGLIS3 plays an oncogene role in the development of bladder cancer and has potential to be a candidate for bladder cancer. Graphical abstract


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Junming Bi ◽  
Hongwei Liu ◽  
Wei Dong ◽  
Weibin Xie ◽  
Qingqing He ◽  
...  

Abstract Background Circular RNAs (circRNAs) represent a subclass of regulatory RNAs that have been shown to have significant regulatory roles in cancer progression. However, the biological functions of circRNAs in bladder cancer (BCa) are largely unknown. Methods Cell invasion models were established, and invasion-related circRNAs were detected by qPCR. Using above method, circ-ZKSCAN1 was picked out for further study. Circ-ZKSCAN1 expression and survival analyses were performed through qPCR. The survival curves were generated by the Kaplan-Meier method, and the log-rank test was used to assess the significance. Cell proliferation, migration and invasion were examined to investigate the function of circ-ZKSCAN1. Tumorigenesis in nude mice was assessed to determine the effect of circ-ZKSCAN1 in bladder cancer. Biotin-coupled probe pull-down assays, FISH and luciferase reporter assays were conducted to confirm the relationship between circ-ZKSCAN1 and microRNA. RNA-seq revealed different molecular changes in downstream genes. Results Here, we found that circ-ZKSCAN1 was downregulated in BCa tissues and cell lines. Circ-ZKSCAN1 levels were associated with survival, tumor grade, pathological T stage and tumor recurrence. Overexpressed circ-ZKSCAN1 inhibits cell proliferation, migration, invasion and metastasis in vitro and in vivo. Mechanistically, we demonstrated that circ-ZKSCAN1 upregulated p21 expression by sponging miR-1178-3p, which suppressed the aggressive biological behaviors in bladder cancer. Conclusions These results reveal that Circ-ZKSCAN1 acts as a tumor suppressor via a novel circ-ZKSCAN1/miR-1178-3p/p21 axis, which have the important role in the proliferation, migration and invasion ablitities of BCa cells and provide a novel perspective on circRNAs in BCa progression.


Author(s):  
Hongjuan Song ◽  
Yuan Liu ◽  
Hui Liang ◽  
Xin Jin ◽  
Liping Liu

Accumulating evidences have revealed the dysregulated expressions and critical roles of non-coding RNAs in various malignancies, including cervical cancer. Nevertheless, our knowledge about the vast majority of non-coding RNAs is still lacking. Here we identified long non-coding RNA (lncRNA) SPINT1-AS1 as a novel cervical cancer-associated lncRNA. SPINT1-AS1 was increased in cervical cancer and correlated with advanced stage and poor prognosis. SPINT1-AS1 was a direct downstream target of miR-214, a well-known tumor suppressive microRNA (miRNA) in cervical cancer. Intriguingly, SPINT1-AS1 was also found to repress miR-214 biogenesis via binding DNM3OS, the primary transcript of miR-214. The interaction between SPINT1-AS1 and DNM3OS repressed the binding of DROSHA and DGCR8 to DNM3OS, blocked DNM3OS cleavage, and therefore repressed mature miR-214 biogenesis. The expression of SPINT1-AS1 was significantly negatively correlated with miR-214 in cervical cancer tissues, supporting the reciprocal repression between SPINT1-AS1 and miR-214 in vivo. Through downregulating mature miR-214 level, SPINT1-AS1 upregulated the expression of β-catenin, a target of miR-214. Thus, SPINT1-AS1 further activated Wnt/β-catenin signaling in cervical cancer. Functionally, SPINT1-AS1 drove cervical cancer cellular proliferation, migration, and invasion in vitro, and also tumorigenesis in vivo. Deletion of the region mediating the interaction between SPINT1-AS1 and DNM3OS, overexpression of miR-214, and inhibition of Wnt/β-catenin signaling all reversed the roles of SPINT1-AS1 in cervical cancer. Collectively, these findings identified SPINT1-AS1 as a novel cervical cancer-associated oncogenic lncRNA which represses miR-214 biogenesis and activates Wnt/β-catenin signaling, highlighting its potential as prognostic biomarker and therapeutic target for cervical cancer.


2018 ◽  
Vol 18 (2) ◽  
pp. 156-165 ◽  
Author(s):  
Jiaqiang Wang ◽  
Chien-shan Cheng ◽  
Yan Lu ◽  
Xiaowei Ding ◽  
Minmin Zhu ◽  
...  

Background: Propofol, a widely used intravenous anesthetic agent, is traditionally applied for sedation and general anesthesia. Explanation: Recent attention has been drawn to explore the effect and mechanisms of propofol against cancer progression in vitro and in vivo. Specifically, the proliferation-inhibiting and apoptosis-inducing properties of propofol in cancer have been studied. However, the underlying mechanisms remain unclear. Conclusion: This review focused on the findings within the past ten years and aimed to provide a general overview of propofol's malignance-modulating properties and the potential molecular mechanisms.


Author(s):  
Jiongwei Pan ◽  
Gang Huang ◽  
Zhangyong Yin ◽  
Xiaoping Cai ◽  
Enhui Gong ◽  
...  

AbstractSignificantly high-expressed circFLNA has been found in various cancer cell lines, but not in lung cancer. Therefore, this study aimed to explore the role of circFLNA in the progression of lung cancer. The target gene of circFLNA was determined by bioinformatics and luciferase reporter assay. Viability, proliferation, migration, and invasion of the transfected cells were detected by CCK-8, colony formation, wound-healing, and transwell assays, respectively. A mouse subcutaneous xenotransplanted tumor model was established, and the expressions of circFLNA, miR-486-3p, XRCC1, CYP1A1, and related genes in the cancer cells and tissues were detected by RT-qPCR, Western blot, or immunohistochemistry. The current study found that miR-486-3p was low-expressed in lung cancer. MiR-486-3p, which has been found to target XRCC1 and CYP1A1, was regulated by circFLNA. CircFLNA was located in the cytoplasm and had a high expression in lung cancer cells. Cancer cell viability, proliferation, migration, and invasion were promoted by overexpressed circFLNA, XRCC1, and CYP1A1 but inhibited by miR-486-3p mimic and circFLNA knockdown. The weight of the xenotransplanted tumor was increased by circFLNA overexpression yet reduced by miR-486-3p mimic. Furthermore, miR-486-3p mimic reversed the effect of circFLNA overexpression on promoting lung cancer cells and tumors and regulating the expressions of miR-486-3p, XRCC1, CYP1A1, and metastasis/apoptosis/proliferation-related factors. However, overexpressed XRCC1 and CYP1A1 reversed the inhibitory effect of miR-486-3p mimic on cancer cells and tumors. In conclusion, circFLNA acted as a sponge of miR-486-3p to promote the proliferation, migration, and invasion of lung cancer cells in vitro and in vivo by regulating XRCC1 and CYP1A1.


Oncogene ◽  
2021 ◽  
Author(s):  
Qiuxia Yan ◽  
Peng Zeng ◽  
Xiuqin Zhou ◽  
Xiaoying Zhao ◽  
Runqiang Chen ◽  
...  

AbstractThe prognosis for patients with metastatic bladder cancer (BCa) is poor, and it is not improved by current treatments. RNA-binding motif protein X-linked (RBMX) are involved in the regulation of the malignant progression of various tumors. However, the role of RBMX in BCa tumorigenicity and progression remains unclear. In this study, we found that RBMX was significantly downregulated in BCa tissues, especially in muscle-invasive BCa tissues. RBMX expression was negatively correlated with tumor stage, histological grade and poor patient prognosis. Functional assays demonstrated that RBMX inhibited BCa cell proliferation, colony formation, migration, and invasion in vitro and suppressed tumor growth and metastasis in vivo. Mechanistic investigations revealed that hnRNP A1 was an RBMX-binding protein. RBMX competitively inhibited the combination of the RGG motif in hnRNP A1 and the sequences flanking PKM exon 9, leading to the formation of lower PKM2 and higher PKM1 levels, which attenuated the tumorigenicity and progression of BCa. Moreover, RBMX inhibited aerobic glycolysis through hnRNP A1-dependent PKM alternative splicing and counteracted the PKM2 overexpression-induced aggressive phenotype of the BCa cells. In conclusion, our findings indicate that RBMX suppresses BCa tumorigenicity and progression via an hnRNP A1-mediated PKM alternative splicing mechanism. RBMX may serve as a novel prognostic biomarker for clinical intervention in BCa.


Author(s):  
Jie Zhang ◽  
Xiao-Yan Li ◽  
Ping Hu ◽  
Yuan-Sheng Ding

Previous study indicates that long noncoding RNA NORAD could serve as a competing endogenous RNA to pancreatic cancer metastasis. However, its role in colorectal cancer (CRC) needs to be investigated. In the present study, we found that the expression of NORAD was significantly upregulated in CRC tissues. Furthermore, the expression of NORAD was positively related with CRC metastasis and patients’ poor prognosis. Knockdown of NORAD markedly inhibited CRC cell proliferation, migration, and invasion but induced cell apoptosis in vitro. In vivo experiments also indicated an inhibitory effect of NORAD on tumor growth. Mechanistically, we found that NORAD served as a competing endogenous RNA for miR-202-5p. We found that there was an inverse relationship between the expression of NORAD and miR-202-5p in CRC tissues. Moreover, overexpression of miR-202-5p in SW480 and HCT116 cells significantly inhibited cellular proliferation, migration, and invasion. Taken together, our study demonstrated that the NORAD/miR-202-5p axis plays a pivotal function on CRC progression.


2020 ◽  
Author(s):  
Hui Guo ◽  
Jianping Zou ◽  
Ling Zhou ◽  
Yan He ◽  
Miao Feng ◽  
...  

Abstract Background:Nucleolar and spindle associated protein (NUSAP1) is involved in tumor initiation, progression and metastasis. However, there are limited studies regarding the role of NUSAP1 in gastric cancer (GC). Methods: The expression profile and clinical significance of NUSAP1 in GC were analysed in online database using GEPIA, Oncomine and KM plotter, which was further confirmed in clinical specimens.The functional role of NUSAP1 were detected utilizing in vitro and in vivo assays. Western blotting, qRT-PCR, the cycloheximide-chase, immunofluorescence staining and Co-immunoprecipitaion (Co-IP) assays were performed to explore the possible molecular mechanism by which NUSAP1 stabilizes YAP protein. Results:In this study, we found that the expression of NUSAP1 was upregulated in GC tissues and correlates closely with progression and prognosis. Additionally, abnormal NUSAP1 expression promoted malignant behaviors of GC cells in vitro and in a xenograft model. Mechanistically, we discovered that NUSAP1 physically interacts with YAP and furthermore stabilizes YAP protein expression, which induces the transcription of Hippo pathway downstream target genes. Furthermore, the effects of NUSAP1 on GC cell growth, migration and invasion were mainly mediated by YAP. Conclusions:Our data demonstrates that the novel NUSAP1-YAP axis exerts an critical role in GC tumorigenesis and progression, and therefore could provide a novel therapeutic target for GC treatment.


Sign in / Sign up

Export Citation Format

Share Document