scholarly journals Canonical TGFβ Signaling and Its Contribution to Endometrial Cancer Development and Progression—Underestimated Target of Anticancer Strategies

2021 ◽  
Vol 10 (17) ◽  
pp. 3900
Author(s):  
Piotr K. Zakrzewski

Endometrial cancer is one of the leading gynecological cancers diagnosed among women in their menopausal and postmenopausal age. Despite the progress in molecular biology and medicine, no efficient and powerful diagnostic and prognostic marker is dedicated to endometrial carcinogenesis. The canonical TGFβ pathway is a pleiotropic signaling cascade orchestrating a variety of cellular and molecular processes, whose alterations are responsible for carcinogenesis that originates from different tissue types. This review covers the current knowledge concerning the canonical TGFβ pathway (Smad-dependent) induced by prototypical TGFβ isoforms and the involvement of pathway alterations in the development and progression of endometrial neoplastic lesions. Since Smad-dependent signalization governs opposed cellular processes, such as growth arrest, apoptosis, tumor cells growth and differentiation, as well as angiogenesis and metastasis, TGFβ cascade may act both as a tumor suppressor or tumor promoter. However, the final effect of TGFβ signaling on endometrial cancer cells depends on the cancer disease stage. The multifunctional role of the TGFβ pathway indicates the possible utilization of alterations in the TGFβ cascade as a potential target of novel anticancer strategies.

Author(s):  
Yarely M. Salinas-Vera ◽  
Dolores Gallardo-Rincón ◽  
Erika Ruíz-García ◽  
Macrina B. Silva-Cázares ◽  
Carmen Sol de la Peña-Cruz ◽  
...  

: Endometrial cancer represents the most frequent neoplasia from the corpus uteri, and comprises the 14th leading cause of death in women worldwide. Risk factors that contribute to the disease include early menarche, late menopause, nulliparity, and menopausal hormone use, as well as hypertension and obesity comorbidities. The clinical effectiveness of chemotherapy is variable, suggesting that novel molecular targeted therapies against specific cellular processes associated with the maintenance of cancer cell survival and therapy resistance urged to ameliorate the rates of success in endometrial cancer treatment. In the course of tumor growth, cancer cells must adapt to decreased oxygen availability in the microenvironment by upregulation of hypoxia-inducible factors, which orchestrate the activation of a transcriptional program leading to cell survival. During this adaptative process, the hypoxic cancer cells may acquire invasive and metastatic properties as well as increased cell proliferation and resistance to chemotherapy, enhanced angiogenesis, vasculogenic mimicry, and maintenance of cancer cell stemness, which contribute to more aggressive cancer phenotypes. Several studies have shown that hypoxia-inducible factor 1 alpha (HIF-1α) protein is aberrantly overexpressed in many solid tumors from breast, prostate, ovarian, bladder, colon, brain, and pancreas. Thus, it has been considered an important therapeutic target. Here, we reviewed the current knowledge of the relevant roles of cellular hypoxia mechanisms and HIF-1α functions in diverse processes associated with endometrial cancer progression. In addition, we also summarize the role of microRNAs in the posttranscriptional regulation of protein-encoding genes involved in the hypoxia response in endometrial cancer. Finally, we pointed out the need for urgent targeted therapies to impair the cellular processes activated by hypoxia in the tumor microenvironment.


2020 ◽  
Vol 17 (1) ◽  
pp. 29-43 ◽  
Author(s):  
Patrick Süß ◽  
Johannes C.M. Schlachetzki

: Alzheimer’s Disease (AD) is the most frequent neurodegenerative disorder. Although proteinaceous aggregates of extracellular Amyloid-β (Aβ) and intracellular hyperphosphorylated microtubule- associated tau have long been identified as characteristic neuropathological hallmarks of AD, a disease- modifying therapy against these targets has not been successful. An emerging concept is that microglia, the innate immune cells of the brain, are major players in AD pathogenesis. Microglia are longlived tissue-resident professional phagocytes that survey and rapidly respond to changes in their microenvironment. Subpopulations of microglia cluster around Aβ plaques and adopt a transcriptomic signature specifically linked to neurodegeneration. A plethora of molecules and pathways associated with microglia function and dysfunction has been identified as important players in mediating neurodegeneration. However, whether microglia exert either beneficial or detrimental effects in AD pathology may depend on the disease stage. : In this review, we summarize the current knowledge about the stage-dependent role of microglia in AD, including recent insights from genetic and gene expression profiling studies as well as novel imaging techniques focusing on microglia in human AD pathology and AD mouse models.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Dominika Justyna Ksiazek-Winiarek ◽  
Magdalena Justyna Kacperska ◽  
Andrzej Glabinski

MicroRNAs are relatively recently discovered class of small noncoding RNAs, which function as important regulators of gene expression. They fine-tune protein expression either by translational inhibition or mRNA degradation. MicroRNAs act as regulators of diverse cellular processes, such as cell differentiation, proliferation, and apoptosis. Their defective biogenesis or function has been identified in various pathological conditions, like inflammation, neurodegeneration, or autoimmunity. Multiple sclerosis is one of the predominated debilitating neurological diseases affecting mainly young adults. It is a multifactorial disorder of as yet unknown aetiology. As far, it is suggested that interplay between genetic and environmental factors is responsible for MS pathogenesis. The role of microRNAs in this pathology is now extensively studied. Here, we want to review the current knowledge of microRNAs role in multiple sclerosis.


Reproduction ◽  
2014 ◽  
Vol 147 (3) ◽  
pp. R75-R86 ◽  
Author(s):  
Carly Cuman ◽  
Ellen Menkhorst ◽  
Amy Winship ◽  
Michelle Van Sinderen ◽  
Tiki Osianlis ◽  
...  

The establishment of a successful pregnancy requires the implantation of a competent blastocyst into a ‘receptive’ endometrium, facilitating the formation of a functional placenta. Inadequate or inappropriate implantation and placentation is a major reason for infertility and is thought to lead to first-trimester miscarriage, placental insufficiency and other obstetric complications. Blastocyst–endometrial interactions are critical for implantation and placental formation. The Notch signalling family is a receptor–ligand family that regulates cellular processes as diverse as proliferation, apoptosis, differentiation, invasion and adhesion. Notch signalling is achieved via cell–cell interaction; thus, via Notch, cells can have direct effects on the fate of their neighbours. Recently, a number of studies have identified Notch receptors and ligands in the endometrium, blastocyst and placenta. This review collates current knowledge of this large receptor–ligand family and explores the role of Notch signalling during implantation and placentation, drawing on information from both human and animal studies. Overall, the evidence suggests that Notch signalling is a critical component of fetal–maternal communication during implantation and placentation and that abnormal Notch expression is associated with impaired placentation and pre-eclampsia.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2825
Author(s):  
Bibiana I. Ferreira ◽  
Bruno Santos ◽  
Wolfgang Link ◽  
Ana Luísa De Sousa-Coelho

The Tribbles family of pseudokinases controls a wide number of processes during cancer on-set and progression. However, the exact contribution of each of the three family members is still to be defined. Their function appears to be context-dependent as they can act as oncogenes or tumor suppressor genes. They act as scaffolds modulating the activity of several signaling pathways involved in different cellular processes. In this review, we discuss the state-of-knowledge for TRIB1, TRIB2 and TRIB3 in the development and progression of colorectal cancer. We take a perspective look at the role of Tribbles proteins as potential biomarkers and therapeutic targets. Specifically, we chronologically systematized all available articles since 2003 until 2020, for which Tribbles were associated with colorectal cancer human samples or cell lines. Herein, we discuss: (1) Tribbles amplification and overexpression; (2) the clinical significance of Tribbles overexpression; (3) upstream Tribbles gene and protein expression regulation; (4) Tribbles pharmacological modulation; (5) genetic modulation of Tribbles; and (6) downstream mechanisms regulated by Tribbles; establishing a comprehensive timeline, essential to better consolidate the current knowledge of Tribbles’ role in colorectal cancer.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Xiaoyi Hu ◽  
Jing li ◽  
Maorong Fu ◽  
Xia Zhao ◽  
Wei Wang

AbstractThe Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway was discovered more than a quarter-century ago. As a fulcrum of many vital cellular processes, the JAK/STAT pathway constitutes a rapid membrane-to-nucleus signaling module and induces the expression of various critical mediators of cancer and inflammation. Growing evidence suggests that dysregulation of the JAK/STAT pathway is associated with various cancers and autoimmune diseases. In this review, we discuss the current knowledge about the composition, activation, and regulation of the JAK/STAT pathway. Moreover, we highlight the role of the JAK/STAT pathway and its inhibitors in various diseases.


Author(s):  
Amandine Girousse ◽  
Maxime Mathieu ◽  
Quentin Sastourné-Arrey ◽  
Sylvie Monferran ◽  
Louis Casteilla ◽  
...  

To coordinate specialized organs, inter-tissue communication appeared during evolution. Consequently, individual organs communicate their states via a vast interorgan communication network (ICN) made up of peptides, proteins, and metabolites that act between organs to coordinate cellular processes under homeostasis and stress. However, the nature of the interorgan signaling could be even more complex and involve mobilization mechanisms of unconventional cells that are still poorly described. Mesenchymal stem/stromal cells (MSCs) virtually reside in all tissues, though the biggest reservoir discovered so far is adipose tissue where they are named adipose stromal cells (ASCs). MSCs are thought to participate in tissue maintenance and repair since the administration of exogenous MSCs is well known to exert beneficial effects under several pathological conditions. However, the role of endogenous MSCs is barely understood. Though largely debated, the presence of circulating endogenous MSCs has been reported in multiple pathophysiological conditions, but the significance of such cell circulation is not known and therapeutically untapped. In this review, we discuss current knowledge on the circulation of native MSCs, and we highlight recent findings describing MSCs as putative key components of the ICN.


2020 ◽  
Vol 477 (19) ◽  
pp. 3649-3672
Author(s):  
Salvatore Rizza ◽  
Giuseppe Filomeni

S-nitrosylation, the post-translational modification of cysteines by nitric oxide, has been implicated in several cellular processes and tissue homeostasis. As a result, alterations in the mechanisms controlling the levels of S-nitrosylated proteins have been found in pathological states. In the last few years, a role in cancer has been proposed, supported by the evidence that various oncoproteins undergo gain- or loss-of-function modifications upon S-nitrosylation. Here, we aim at providing insight into the current knowledge about the role of S-nitrosylation in different aspects of cancer biology and report the main anticancer strategies based on: (i) reducing S-nitrosylation-mediated oncogenic effects, (ii) boosting S-nitrosylation to stimulate cell death, (iii) exploiting S-nitrosylation through synthetic lethality.


Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1525 ◽  
Author(s):  
Geny Piro ◽  
Carmine Carbone ◽  
Luisa Carbognin ◽  
Sara Pilotto ◽  
Chiara Ciccarese ◽  
...  

Immunotherapy has emerged as the new therapeutic frontier of cancer treatment, showing enormous survival benefits in multiple tumor diseases. Although undeniable success has been observed in clinical trials, not all patients respond to treatment. Different concurrent conditions can attenuate or completely abrogate the usefulness of immunotherapy due to the activation of several escape mechanisms. Indeed, the tumor microenvironment has an almost full immunosuppressive profile, creating an obstacle to therapeutic treatment. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) governs a plethora of cellular processes, including maintenance of genomic stability, cell survival/apoptosis, migration, and metabolism. The repertoire of PTEN functions has recently been expanded to include regulation of the tumor microenvironment and immune system, leading to a drastic reevaluation of the canonical paradigm of PTEN action with new potential implications for immunotherapy-based approaches. Understanding the implication of PTEN in cancer immunoediting and immune evasion is crucial to develop new cancer intervention strategies. Recent evidence has shown a double context-dependent role of PTEN in anticancer immunity. Here we summarize the current knowledge of PTEN’s role at a crossroads between tumor and immune compartments, highlighting the most recent findings that are likely to change future clinical practice.


2020 ◽  
Vol 21 (18) ◽  
pp. 6841
Author(s):  
Mafalda Escobar-Henriques ◽  
Vincent Anton

Cdc48/p97 is a ring-shaped, ATP-driven hexameric motor, essential for cellular viability. It specifically unfolds and extracts ubiquitylated proteins from membranes or protein complexes, mostly targeting them for proteolytic degradation by the proteasome. Cdc48/p97 is involved in a multitude of cellular processes, reaching from cell cycle regulation to signal transduction, also participating in growth or death decisions. The role of Cdc48/p97 in endoplasmic reticulum-associated degradation (ERAD), where it extracts proteins targeted for degradation from the ER membrane, has been extensively described. Here, we present the roles of Cdc48/p97 in mitochondrial regulation. We discuss mitochondrial quality control surveillance by Cdc48/p97 in mitochondrial-associated degradation (MAD), highlighting the potential pathologic significance thereof. Furthermore, we present the current knowledge of how Cdc48/p97 regulates mitofusin activity in outer membrane fusion and how this may impact on neurodegeneration.


Sign in / Sign up

Export Citation Format

Share Document