scholarly journals Effects of Eutectic Modification and Grain Refinement on Microstructure and Properties of PM AlSi7 Metallic Foams

Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1241 ◽  
Author(s):  
Dirk Lehmhus ◽  
Daniela Hünert ◽  
Ulrike Mosler ◽  
Ulrich Martin ◽  
Jörg Weise

For AlSi7 foams, microstructure modification by variation of solidification rates and addition of Sr, B and TiB2/TiAl3 was investigated and its transfer to powder metallurgical metal foaming processes demonstrated. Microstructural characterization focused on grain size and morphology of the eutectic phase. Cooling rates during solidification were linked to secondary dendrite arm spacing, establishing a microstructure-based measure of solidification rates. Effects of refining and modification treatments were compared and their influence on foam expansion evaluated. Studies on foams focused on comparison of micro- and pore structure using metallographic techniques as well as computed tomography in combination with image analysis. Reference samples without additives and untreated as well as annealed TiH2 as foaming agent allowed evaluation of pore and microstructure impact on mechanical performance. Evaluation of expansion and pore structure revealed detrimental effects of Sr and B additions, limiting the evaluation of mechanical performance to the TiB2 samples. These, as well as the two reference series samples, were subjected to quasi-static compression testing. Stress-strain curves were gained and density-dependent expressions of ultimate compressive strength, plateau strength and tangent modulus derived. Weibull evaluation of density-normalized mechanical properties revealed a significant influence of grain size on the Weibull modulus at densities below 0.4 g/cm3.

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1563
Author(s):  
Sofia Marquez-Bravo ◽  
Ingo Doench ◽  
Pamela Molina ◽  
Flor Estefany Bentley ◽  
Arnaud Kamdem Tamo ◽  
...  

Extremely high mechanical performance spun bionanocomposite fibers of chitosan (CHI), and cellulose nanofibers (CNFs) were successfully achieved by gel spinning of CHI aqueous viscous formulations filled with CNFs. The microstructural characterization of the fibers by X-ray diffraction revealed the crystallization of the CHI polymer chains into anhydrous chitosan allomorph. The spinning process combining acidic–basic–neutralization–stretching–drying steps allowed obtaining CHI/CNF composite fibers of high crystallinity, with enhanced effect at incorporating the CNFs. Chitosan crystallization seems to be promoted by the presence of cellulose nanofibers, serving as nucleation sites for the growing of CHI crystals. Moreover, the preferential orientation of both CNFs and CHI crystals along the spun fiber direction was revealed in the two-dimensional X-ray diffraction patterns. By increasing the CNF amount up to the optimum concentration of 0.4 wt % in the viscous CHI/CNF collodion, Young’s modulus of the spun fibers significantly increased up to 8 GPa. Similarly, the stress at break and the yield stress drastically increased from 115 to 163 MPa, and from 67 to 119 MPa, respectively, by adding only 0.4 wt % of CNFs into a collodion solution containing 4 wt % of chitosan. The toughness of the CHI-based fibers thereby increased from 5 to 9 MJ.m−3. For higher CNFs contents like 0.5 wt %, the high mechanical performance of the CHI/CNF composite fibers was still observed, but with a slight worsening of the mechanical parameters, which may be related to a minor disruption of the CHI matrix hydrogel network constituting the collodion and gel fiber, as precursor state for the dry fiber formation. Finally, the rheological behavior observed for the different CHI/CNF viscous collodions and the obtained structural, thermal and mechanical properties results revealed an optimum matrix/filler compatibility and interface when adding 0.4 wt % of nanofibrillated cellulose (CNF) into 4 wt % CHI formulations, yielding functional bionanocomposite fibers of outstanding mechanical properties.


2020 ◽  
Vol 17 (6) ◽  
pp. 831-836
Author(s):  
M. Vykunta Rao ◽  
Srinivasa Rao P. ◽  
B. Surendra Babu

Purpose Vibratory weld conditioning parameters have a great influence on the improvement of mechanical properties of weld connections. The purpose of this paper is to understand the influence of vibratory weld conditioning on the mechanical and microstructural characterization of aluminum 5052 alloy weldments. An attempt is made to understand the effect of the vibratory tungsten inert gas (TIG) welding process parameters on the hardness, ultimate tensile strength and microstructure of Al 5052-H32 alloy weldments. Design/methodology/approach Aluminum 5052 H32 specimens are welded at different combinations of vibromotor voltage inputs and time of vibrations. Voltage input is varied from 50 to 230 V at an interval of 10 V. At each voltage input to the vibromotor, there are three levels of time of vibration, i.e. 80, 90 and 100 s. The vibratory TIG-welded specimens are tested for their mechanical and microstructural properties. Findings The results indicate that the mechanical properties of aluminum alloy weld connections improved by increasing voltage input up to 160 V. Also, it has been observed that by increasing vibromotor voltage input beyond 160 V, mechanical properties were reduced significantly. It is also found that vibration time has less influence on the mechanical properties of weld connections. Improvement in hardness and ultimate tensile strength of vibratory welded joints is 16 and 14%, respectively, when compared without vibration, i.e. normal weld conditions. Average grain size is measured as per ASTM E 112–96. Average grain size is in the case of 0, 120, 160 and 230 is 20.709, 17.99, 16.57 and 20.8086 µm, respectively. Originality/value Novel vibratory TIG welded joints are prepared. Mechanical and micro-structural properties are tested.


2019 ◽  
Vol 19 (11) ◽  
pp. 7374-7380
Author(s):  
G. Vourlias

This study is focused on the preparation of metal (Cu, Zn) nanopowders by an electrochemical reduction/precipitation procedure, which provides the primary components for the development of CuZn alloy metallic foams. This well-controlledmethod allows straight forward control of the reaction parameters and the restriction of oxidation effects, while resulting in stable and small grain size metal nanopowders. Whether precipitation of Cu and Zn is held separately or in alternating deposition mode, the characteristics of synthesized nanopowders assist easier mixing, alloying and realization of metallic foams suitable for water treatment applications. CuZn alloy foams developed with this technique presented equivalent efficiency and lower corrosion and leaching rates compared to those prepared with commercial powder methods.


2013 ◽  
Vol 278-280 ◽  
pp. 429-432
Author(s):  
Qing Song Yan ◽  
Yong Li ◽  
Gang Lu ◽  
Bai Ping Lu ◽  
Bo Wen Xiong ◽  
...  

Through analyzing and testing the microstructure and property of ZL114A aluminum alloy castings under the condition of alternating electromagnetic field, the effects of the intensity of alternating electromagnetic field on the microstructure and property of ZL114A aluminum alloy castings are studied. The results showed the intensity of alternating electromagnetic field had a great influence on the microstructure and property of ZL114A aluminum alloy castings. With the increase of the intensity of alternating electromagnetic field, the grain size of ZL114A aluminum alloy was more and more small, under the 10A current intensity, the grain was the finest. Whereas, with the increase of the intensity of alternating electromagnetic field further, the grain is more and more big. Meanwhile, in a certain rang of current intensity, the mechanical performance of ZL114A aluminum alloy had been improved comprehensively, its tensile intensity was improved 10MPa and the elongation was increased by 30%.


1996 ◽  
Vol 430 ◽  
Author(s):  
M. E. Brito ◽  
K. Hirao ◽  
M. Toriyama ◽  
M. Hirota

AbstractPreliminary results on microwave sintering of seeded silicon nitride show that a well defined bi-modal grain size distribution is attainable in Si3N4-Y2O3-Al2O 3-MgO sintered bodies by microwave sintering at 28 GHz of materials seeded with ß-Si3N4 particles (2 vol. %). A positive effect on the mechanical performance is anticipated for these microstructurally controlled silicon nitride ceramics


2021 ◽  
Vol 5 (4) ◽  
pp. 152
Author(s):  
Shao-Heng He ◽  
Zhi Ding ◽  
Hai-Bo Hu ◽  
Min Gao

In this study, a series of nuclear magnetic resonance (NMR) tests was conducted on calcareous sand, quartz sand, and glass bead with a wide range of grain sizes, to understand the effect of grain size on the micro-pore structure and fractal characteristics of the carbonate-based sand and silicate-based sand. The pore size distribution (PSD) of the tested materials were obtained from the NMR T2 spectra, and fractal theory was introduced to describe the fractal properties of PSD. Results demonstrate that grain size has a significant effect on the PSD of carbonate-based sand and silicate-based sand. As grain size increases, the PSD of sands evolves from a binary structure with two peaks to a ternary structure with three peaks. The increase in the grain size can cause a remarkable increase in the maximum pore size. It is also found that the more irregular the particle shape, the better the continuity between the large and medium pores. In addition, grain size has a considerable effect on the fractal dimension of the micro-pore structure. The increase of grain size can lead to a significant increase in the heterogeneity and fractal dimension in PSD for calcareous sand, quartz sand and glass bead.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5856
Author(s):  
Pragya Mishra ◽  
Pia Åkerfeldt ◽  
Farnoosh Forouzan ◽  
Fredrik Svahn ◽  
Yuan Zhong ◽  
...  

Laser powder bed fusion (L-PBF) has attracted great interest in the aerospace and medical sectors because it can produce complex and lightweight parts with high accuracy. Austenitic stainless steel alloy 316 L is widely used in many applications due to its good mechanical properties and high corrosion resistance over a wide temperature range. In this study, L-PBF-processed 316 L was investigated for its suitability in aerospace applications at cryogenic service temperatures and the behavior at cryogenic temperature was compared with room temperature to understand the properties and microstructural changes within this temperature range. Tensile tests were performed at room temperature and at −196 °C to study the mechanical performance and phase changes. The microstructure and fracture surfaces were characterized using scanning electron microscopy, and the phases were analyzed by X-ray diffraction. The results showed a significant increase in the strength of 316 L at −196 °C, while its ductility remained at an acceptable level. The results indicated the formation of ε and α martensite during cryogenic testing, which explained the increase in strength. Nanoindentation revealed different hardness values, indicating the different mechanical properties of austenite (γ), strained austenite, body-centered cubic martensite (α), and hexagonal close-packed martensite (ε) formed during the tensile tests due to mechanical deformation.


2010 ◽  
Vol 667-669 ◽  
pp. 457-461
Author(s):  
Wei Guo ◽  
Qu Dong Wang ◽  
Man Ping Liu ◽  
Tao Peng ◽  
Xin Tao Liu ◽  
...  

Cyclic channel die compression (CCDC) of AZ31-1.7 wt.% Si alloy was performed up to 5 passes at 623 K in order to investigate the microstructure and mechanical properties of compressed alloys. The results show that multi-pass CCDC is very effective to refine the matrix grain and Mg2Si phases. After the alloy is processed for 5 passes, the mean grain size decreases from 300 μm of as-cast to 8 μm. Both dendritic and Chinese script type Mg2Si phases break into small polygonal pieces and distribute uniformly in the matrix. The tensile strength increases prominently from 118 MPa to 216 MPa, whereas the hardness of alloy deformed 5 passes only increase by 8.4% compared with as-cast state.


2004 ◽  
pp. 39-46

Abstract In castings, microstructural features are products of metal chemistry and solidification conditions. The microstructural features, excluding defects, that most strongly affect the mechanical properties or aluminum castings are size, form, and distribution of intermetallic phases; dendrite arm spacing; grain size and shape; and eutectic modification and primary phase refinement. This chapter discusses the effects of these microstructural features on properties and methods for controlling them. The chapter concludes with a detailed examination of the refinement of hypereutectic aluminum-silicon alloys.


2020 ◽  
Vol 12 (2) ◽  
pp. 552 ◽  
Author(s):  
Weronika Kruszelnicka ◽  
Andrzej Marczuk ◽  
Robert Kasner ◽  
Patrycja Bałdowska-Witos ◽  
Katarzyna Piotrowska ◽  
...  

Strength properties of grains have a significant impact on the energy demand of grinding mills. This paper presents the results of tests of strength and energy needed the for destruction of rice grains. The research aim was to experimentally determine mechanical and processing properties of the rice grains. The research problem was formulated in the form of questions: (1) what force and energy are needed to induce a rupture of rice grain of the Oryza sativa L. of long-grain variety? (2) what is the relationship between grain size and strength parameters and the energy of grinding rice grain of the species Oryza sativa L. long-grain variety? In order to find the answer to the problems posed, a static compression test of rice grains was done. The results indicate that the average forces needed to crush rice grain are 174.99 kg m·s−2, and the average energy is 28.03 mJ. There was no statistically significant relationship between the grain volume calculated based on the volumetric mass density Vρ and the crushing energy, nor between the volume Vρ and other strength properties of rice grains. In the case of Vs, a low negative correlation between strength σmin and a low positive correlation between the power inducing the first crack were found for the grain size related volume. A low negative correlation between the grain thickness a3, stresses σmin and work WFmax was found as well as a low positive correlation between thickness a3 and the force inducing the first crack Fmin.


Sign in / Sign up

Export Citation Format

Share Document