scholarly journals NUMERICAL ESTIMATION OF THERMAL STABILITY BOUNDARIES OF FIXED BED BIOMASS COMBUSTION USING LOCAL CHEMICAL EQUILIBRIUM APPROXIMATION

Author(s):  
Игорь Геннадьевич Донской

В статье исследуется зависимость стационарной температуры слоевого горения биомассы от скорости подачи и удельного расхода воздушного дутья. Для этого стационарное уравнение теплового баланса вместе с простейшим уравнением кинетики для химической реакции решается в широком диапазоне параметров. Для численного решения вводится ряд допущений (узкая зона реакции, преимущественный отвод теплоты путем лучистой теплопроводности, равновесный состав продуктов окисления). Результаты расчетов дают граничные значения расходных и стехиометрических параметров, при которых возможно устойчивое горение. The article investigates the dependence of the stationary combustion temperature of layer combustion of biomass on the feed rate and specific consumption of air blast. For this, the stationary heat balance equation, together with the simplest kinetic equation for a chemical reaction, is solved over a wide range of parameters. For a numerical solution, a number of assumptions are introduced (a narrow reaction zone, preferential heat removal by radiant heat conduction, equilibrium composition of oxidation products). The calculation results give the boundary values of the consumption and stoichiometric parameters at which stable combustion is possible.

2019 ◽  
Vol 70 (7) ◽  
pp. 2330-2334
Author(s):  
Mihaela Ciopec ◽  
Adina Negrea ◽  
Narcis Duteanu ◽  
Corneliu Mircea Davidescu ◽  
Iosif Hulka ◽  
...  

Arsenic content in groundwater�s present a wide range of concentration, ranging from hundreds of micrograms to thousands of micrograms of arsenic per litter, while the maximum permitted arsenic concentration established by World Health Organization (WHO) is 10 mg L-1. According to the WHO all people, regardless of their stage of development and their social economic condition, have the right to have access to adequate drinking water. The most efficient and economic technique used for arsenic removal is represented by adsorption. In order to make this remediation technique more affordable and environmentally friendly is important to new materials with advance adsorbent properties. Novelty of present paper is represented by the usage of a new adsorbent material obtained by physical - chemical modification of Amberlite XAD polymers using crown ethers followed by iron doping, due to well-known affinity of arsenic for iron ions. Present paper aims to test the obtained modified Amberlite polymer for arsenic removal from real groundwater by using adsorption in a fixed bed column, establishing in this way a mechanism for the adsorption process. During experimental work was studied the influence of competing ions from real water into the arsenic adsorption process.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 209-216
Author(s):  
R. Sublet ◽  
A. Boireau ◽  
V.X. Yang ◽  
M.-O. Simonnot ◽  
C. Autugelle

Two lead removal water filters were developed to lower lead levels in drinking water below 10 μg.L-1 in order to meet the new regulation given by the European Directive 98-83, applicable in December 2013. An appropriate adsorbent was selected through a stringent research program among a wide range of media, and is composed of a synthetic zeolite and an activated carbon. Two prototypes were developed: the first is a faucet-mounted filter which contains a fixed bed of the adsorbent and a hollow fiber bundle, while the second is an under-sink cartridge made of a porous extruded block of carbon and adsorbent. Both are able to treat at least 1,000 litres of any water containing on average 100 to 150 μg Pb.L-1, by lowering the lead concentration below 10 μg.L-1. Once their safety considerations were addressed by an independent laboratory according to the French Ministry of Health recommendations, 20 prototypes were installed at consumers' taps in northeastern France. Their performance in terms of lead removal, HPC control and bad taste and odor reduction was followed for 6 months. This field testing program resulted in the validation of both prototypes which meet the new French Ministry of Health recommendations and assures that the filtered water is fully ED 98-83 compliant. Their commercialization will be launched first in France in middle 2002.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Kang Wang ◽  
Junsoo Han ◽  
Angela Yu Gerard ◽  
John R. Scully ◽  
Bi-Cheng Zhou

AbstractThe potential-pH diagram, a graphical representation of the thermodynamically predominant reaction products in aqueous corrosion, is originally proposed for the corrosion of pure metals. The original approach only leads to stoichiometric oxides and hydroxides as the oxidation products. However, numerous experiments show that non-stoichiometric oxide scales are prevalent in the aqueous corrosion of alloys. In the present study, a room temperature potential-pH diagram considering oxide solid solutions, as a generalization of the traditional potential-pH diagram with stoichiometric oxides, is constructed for an FCC single-phase multi-principal element alloy (MPEA) based on the CALculation of PHAse Diagram method. The predominant reaction products, the ions in aqueous solution, and the cation distribution in oxides are predicted. The oxide solid solution is stabilized by the mixing free energy (or mixing entropy) and the stabilizing effect becomes more significant as the temperature increases. Consequently, solid solution oxides are stable in large regions of the potential-pH diagram and the mixing free energy mostly affects the equilibrium composition of the stable oxides, while the shape of stable regions for oxides is mostly determined by the structure of the stable oxides. Agreements are found for Ni2+, Fe2+, and Mn2+ between the atomic emission spectroelectrochemistry measurements and thermodynamic calculations, while deviations exist for Cr3+ and Co2+ possibly due to surface complexation with species such as Cl− and the oxide dissolution. By incorporating the solution models of oxides, the current work presents a general and more accurate way to analyze the reaction products during aqueous corrosion of MPEAs.


2021 ◽  
Vol 407 ◽  
pp. 113-120
Author(s):  
Nat Thuchayapong ◽  
Nattawut Tharawadee

This research studies on the effect of additive (Dolomite) on Biomass powder (Cassava rhizome) which passes Torrefied process and fixed bed at 250 degrees Celsius for one hour and a half. The gasifier with up-draft type was used in this experiment. Air pressure was fixed at 0.1 Bar. The useful heat (Quseful) and Low heating valves (LHV) was investigated by using an Automatic Bomb Calorimeter. Moreover, the dolomite was varied 0, 10 and 15% by weight mixed with Cassava rhizome achieved with Torrefied process. When Low heating valves (LHV) slightly decreases from 21.96±0.22 MJ/kg to 18.15±0.50 MJ/kg, Quseful heat from the burning from gasifier sharply increase when it is mixed with dolomite from 753.34±39.18 to 1,003.97±33.49KJ respectively. The loading of dolomite has significance affecting the useful heat. The present study reveals that low heating valves (LHV) decreases and Quseful heat increase result from dolomite which gives a clean gas product and the Tar molecule can be easily broken. The CO2 gas from the combustion process was absorbed by CaO, which is the main component in dolomite. The cost of mixing 8.9% of Dolomite with Cassava rhizome is the optimum ratio for the biomass combustion process.


Author(s):  
Enes Tamdogan ◽  
Mehmet Arik ◽  
M. Baris Dogruoz

With the recent advances in wide band gap device technology, solid-state lighting (SSL) has become favorable for many lighting applications due to energy savings, long life, green nature for environment, and exceptional color performance. Light emitting diodes (LED) as SSL devices have recently offered unique advantages for a wide range of commercial and residential applications. However, LED operation is strictly limited by temperature as its preferred chip junction temperature is below 100 °C. This is very similar to advanced electronics components with continuously increasing heat fluxes due to the expanding microprocessor power dissipation coupled with reduction in feature sizes. While in some of the applications standard cooling techniques cannot achieve an effective cooling performance due to physical limitations or poor heat transfer capabilities, development of novel cooling techniques is necessary. The emergence of LED hot spots has also turned attention to the cooling with dielectric liquids intimately in contact with the heat and photon dissipating surfaces, where elevated LED temperatures will adversely affect light extraction and reliability. In the interest of highly effective heat removal from LEDs with direct liquid cooling, the current paper starts with explaining the increasing thermal problems in electronics and also in lighting technologies followed by a brief overview of the state of the art for liquid cooling technologies. Then, attention will be turned into thermal consideration of approximately a 60W replacement LED light engine. A conjugate CFD model is deployed to determine local hot spots and to optimize the thermal resistance by varying multiple design parameters, boundary conditions, and the type of fluid. Detailed system level simulations also point out possible abatement techniques for local hot spots while keeping light extraction at maximum.


2003 ◽  
Vol 47 (1) ◽  
pp. 113-120 ◽  
Author(s):  
D.S. Chaudhary ◽  
S. Vigneswaran ◽  
V. Jegatheesan ◽  
H.H. Ngo ◽  
H. Moon ◽  
...  

Wastewater treatment has always been a major concern in the developed countries. Over the last few decades, activated carbon adsorption has gained importance as an alternative tertiary wastewater treatment and purification process. In this study, granular activated carbon (GAC) adsorption was evaluated in terms of total organic carbon (TOC) removal from low strength synthetic wastewater. This paper provides details on adsorption experiments conducted on synthetic wastewater to develop suitable adsorption isotherms. Although the inorganics used in the synthetic wastewater solution had an overall unfavourable effect on adsorption of organics, the GAC adsorption system was found to be effective in removing TOC from the wastewater. This study showed that equation of state (EOS) theory was able to fit the adsorption isotherm results more precisely than the most commonly used Freundlich isotherm. Biodegradation of the organics with time was the most crucial and important aspect of the system and it was taken into account in determining the isotherm parameters. Initial organic concentration of the wastewater was the determining factor of the model parameters, and hence the isotherm parameters were determined covering a wide range of initial organic concentrations of the wastewater. As such, the isotherm parameters derived using the EOS theory could predict the batch adsorption and fixed bed adsorption results of the multi-component system successfully. The isotherm parameters showed a significant effect on the determination of the mass transfer coefficients in batch and fixed bed systems.


2015 ◽  
Vol 725-726 ◽  
pp. 1255-1260
Author(s):  
Tamara Daciuk ◽  
Vera Ulyasheva

Numerical experiment has been successfully used during recent 10-15 years to solve a wide range of thermal and hydrogasodynamic tasks. Application of mathematical modeling used to design the ventilation systems for production premises characterized by heat emission may be considered to be an effective method to obtain reasonable solutions. Results of calculation performed with numerical solution of ventilation tasks depend on turbulence model selection. Currently a large number of different turbulence models used to calculate turbulent flows are known. Testing and definition of applicability limits for semiempirical models of turbulence should be considered to be a preliminary stage of calculation. This article presents results of test calculations pertaining to thermal air process modeling in premises characterized by presence of heat emission sources performed with employment of different models of turbulence. Besides, analysis of calculation results and comparison with field measurements data are presented.


Author(s):  
Gordon E. Andrews ◽  
Aysha Irshad ◽  
Herodotus N. Phylaktou ◽  
Bernard M. Gibbs

Abstract A modified cone calorimeter for controlled atmosphere combustion was used to investigate the gases released from fixed bed rich combustion of solid biomass. The cone calorimeter was used with 50 kW/m2 of radiant heat that simulated a larger gasification system. The test specimen in the cone calorimeter is 100mm square and this sits on a load cell so that the mass burn rate can be determined. Pine wood was burned with fixed air ventilation that created rich combustion at 1.5–4 equivalence ratio, Ø. The raw exhaust gas was sampled using a multi-hole gas sample probe in a discharge chimney above the cone heater, connected via heated sample lines, filters and pumps to the heated Gasmet FTIR. The FTIR was calibrated for 60 species, including 40+ hydrocarbons. The hydrogen in the gas was computed from the measured CO concentration using the water-gas shift reaction. The exhaust gas temperature was also measured so that the sensible heat from the gasification zone was included in the energy balance. The GCV of the pine was 18.8 MJ/kgpine and at the optimum Ø the energy in the rich combustion zone gases was 14.5 MJ/kgpine, which is a 77% energy conversion from solid biomass to a gaseous fuel feed for potential gas turbine applications. This conversion efficiency is comparable with the best conventional gasification of biomass and higher than most published conversion efficiencies for coal gasifiers. Of the energy in the gas from the rich combustion 35% was from the CO, 20% from hydrogen, 35% from hydrocarbons and 10% sensible heat. Ash remained in the rich burning gasification zone. As the biomass is a carbon neutral fuel there is no need to convert the gasified gases to hydrogen, with the associated energy losses.


1965 ◽  
Vol 87 (1) ◽  
pp. 117-130 ◽  
Author(s):  
R. D. Zerkle ◽  
J. Edward Sunderland

The transient, one-dimensional temperature distribution is determined for a slab, insulated on one face, and subjected to thermal radiation at the other face. The slab is initially at a uniform temperature and is assumed to be homogeneous, isotropic, and opaque; the physical properties are assumed to be independent of temperature. Transient temperature distributions for both heating and cooling situations are obtained by means of a thermal-electrical analog computer. A diode limiter circuit is used to simulate the nonlinear radiant heat flux. The transient temperature distributions are presented in a dimensionless, graphical form for a wide range of variables. Approximate analytical solutions are also given which complement and extend the solution charts over ranges of parameters not covered in the charts.


Author(s):  
Kuang-Han Chu ◽  
Ryan Enright ◽  
Evelyn N. Wang

We experimentally investigated pool boiling on microstructured surfaces which demonstrate high critical heat flux (CHF) by enhancing wettability. The microstructures were designed to provide a wide range of well-defined surface roughness to study roughness-augmented wettability on CHF. A maximum CHF of 196 W/cm2 and heat transfer coefficient (h) greater than 80 kW/m2K were achieved. To explain the experimental results, a model extended from a correlation developed by Kandlikar was developed, which well predicts CHF in the complete wetting regime where the apparent liquid contact angle is zero. The model offers a first step towards understanding complex pool boiling processes and developing models to accurately predict CHF on structured surfaces. The insights gained from this work provide design guidelines for new surface technologies with higher heat removal capability that can be effectively used by industry.


Sign in / Sign up

Export Citation Format

Share Document