scholarly journals Role of microRNAs in the molecular diagnosis of cancer

2010 ◽  
Vol 1 (1) ◽  
pp. 4 ◽  
Author(s):  
Simona Giglio ◽  
Andrea Vecchione

MicroRNAs (miRNAs) are evolutionarily conserved, endogenous, small non-coding RNA molecules of about 22 nucleotides in length that function as posttranscriptional gene regulators. They are involved in numerous cellular processes including development, cell differentiation, cell cycle regulation and apoptosis. There is increasing evidence to show that miRNAs are mutated or differentially expressed in many types of cancer and specific functions of the miRNAs are now becoming apparent. Here we discuss the current literature on potential usefulness of miRNAs as diagnostic markers, emphasizing the involvement of specific miRNAs in particular tumor types, highlighting their potential role in distinguishing benign from malignant tissues and/or the different subtypes of the same tumor and/or in diagnosis and classification of tumor of unknown origin.

2020 ◽  
Vol 7 (3) ◽  
pp. 19-26
Author(s):  
I. N. Peregorodiev ◽  
S. V. Vinokurova ◽  
V. Yu. Bohyan ◽  
V. V. Delektorskaya ◽  
O. A. Malikhova ◽  
...  

Neuroendocrine neoplasms (NENs) are a heterogeneous group of rare epithelial tumors that arise from cells with a neuroendocrine phenotype. NENs are found in the gastrointestinal tract and pancreas – 60 % of all localities. The incidence of gastric NENs is about 9 % of all neuroendocrine tumors of the gastrointestinal tract and 0.3 % of all stomach tumors. Stomach neuroendocrine tumors (NETs) are classified into three clinico-pathological types, based on etiology, pathogenesis and morphology. There are also separate neuroendocrine cancers: small- and large-cell. The prognosis and approach to treatment of various types of gastric NENs differs significantly. Modern methods of instrumental diagnostics, immunohistochemical methods of morphological research, along with light microscopy, do not always allow us to accurately assess the malignant potential of a tumor and individualize the treatment process. One of the promising directions in the study of NETs is to determine the molecular mechanism underlying their development, in particular the role of microRNAs. This direction can open a new vector of understanding the pathogenesis, determining the prognosis of the disease, as well as finding new application points for the drug treatment of NETs. MicroRNAs are a class of short non-coding RNA molecules (18–25 nucleotides). MicroRNAs can be involved in the regulation of all major cellular processes, including proliferation and differentiation, metabolism, signaling pathways, and apoptosis. A study of microRNA expression in tissues revealed tumor-specific microRNAs. In contrast to a number of other malignant tumors, microRNA expression in patients diagnosed with NENs is poorly understood. MicroRNA-222 and microRNA-202 are among the few microRNAs that have been demonstrated in the NETs of the stomach.


Author(s):  
Tanu Sharma ◽  
James A. Radosevich ◽  
Chandi C. Mandal

: Autophagy is an evolutionarily conserved pathway that eliminates unwanted proteins out of the cell and increases cell survival. But dysfunctional autophagy is associated with cancer progression, cellular adaptation, cancer metastasis and makes it an attractive therapeutic target. MicroRNAs (miRNAs) are small single-stranded non-coding RNA molecules that usually bind to 3’UTR of mRNAs. This interaction eventually inhibits protein synthesis by repressing translation and/or by degrading mRNAs. miRNAs play a crucial role in the regulation of autophagy and also behave as both tumor suppressors and promoters in colorectal cancer. This paper defines an overall molecular view of how miRNAs regulate the dual role of autophagy in colorectal cancer. It also highlights how long non-coding RNAs modulate miRNAs expression to regulate autophagy in colorectal cancer. Thus, targeting autophagy by miRNAs seems to be a potential therapeutic strategy for colorectal cancer.


2021 ◽  
Vol 11 (6) ◽  
pp. 513
Author(s):  
Zheng Zhang ◽  
Meng Gu ◽  
Zhongze Gu ◽  
Yan-Ru Lou

Genetic polymorphisms are defined as the presence of two or more different alleles in the same locus, with a frequency higher than 1% in the population. Since the discovery of long non-coding RNAs (lncRNAs), which refer to a non-coding RNA with a length of more than 200 nucleotides, their biological roles have been increasingly revealed in recent years. They regulate many cellular processes, from pluripotency to cancer. Interestingly, abnormal expression or dysfunction of lncRNAs is closely related to the occurrence of human diseases, including cancer and degenerative neurological diseases. Particularly, their polymorphisms have been found to be associated with altered drug response and/or drug toxicity in cancer treatment. However, molecular mechanisms are not yet fully elucidated, which are expected to be discovered by detailed studies of RNA–protein, RNA–DNA, and RNA–lipid interactions. In conclusion, lncRNAs polymorphisms may become biomarkers for predicting the response to chemotherapy in cancer patients. Here we review and discuss how gene polymorphisms of lncRNAs affect cancer chemotherapeutic response. This knowledge may pave the way to personalized oncology treatments.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 902
Author(s):  
Eva Costanzi ◽  
Carolina Simioni ◽  
Gabriele Varano ◽  
Cinzia Brenna ◽  
Ilaria Conti ◽  
...  

Extracellular vesicles (EVs) have attracted interest as mediators of intercellular communication following the discovery that EVs contain RNA molecules, including non-coding RNA (ncRNA). Growing evidence for the enrichment of peculiar RNA species in specific EV subtypes has been demonstrated. ncRNAs, transferred from donor cells to recipient cells, confer to EVs the feature to regulate the expression of genes involved in differentiation, proliferation, apoptosis, and other biological processes. These multiple actions require accuracy in the isolation of RNA content from EVs and the methodologies used play a relevant role. In liver, EVs play a crucial role in regulating cell–cell communications and several pathophysiological events in the heterogeneous liver class of cells via horizontal transfer of their cargo. This review aims to discuss the rising role of EVs and their ncRNAs content in regulating specific aspects of hepatocellular carcinoma development, including tumorigenesis, angiogenesis, and tumor metastasis. We analyze the progress in EV-ncRNAs’ potential clinical applications as important diagnostic and prognostic biomarkers for liver conditions.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 921
Author(s):  
Ekaterina Mikhailovna Stasevich ◽  
Matvey Mikhailovich Murashko ◽  
Lyudmila Sergeevna Zinevich ◽  
Denis Eriksonovich Demin ◽  
Anton Markovich Schwartz

Alterations in the expression level of the MYC gene are often found in the cells of various malignant tumors. Overexpressed MYC has been shown to stimulate the main processes of oncogenesis: uncontrolled growth, unlimited cell divisions, avoidance of apoptosis and immune response, changes in cellular metabolism, genomic instability, metastasis, and angiogenesis. Thus, controlling the expression of MYC is considered as an approach for targeted cancer treatment. Since c-Myc is also a crucial regulator of many cellular processes in healthy cells, it is necessary to find ways for selective regulation of MYC expression in tumor cells. Many recent studies have demonstrated that non-coding RNAs play an important role in the regulation of the transcription and translation of this gene and some RNAs directly interact with the c-Myc protein, affecting its stability. In this review, we summarize current data on the regulation of MYC by various non-coding RNAs that can potentially be targeted in specific tumor types.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4240
Author(s):  
Thomas Meyer ◽  
Michael Sand ◽  
Lutz Schmitz ◽  
Eggert Stockfleth

Keratinocyte carcinomas (KC) include basal cell carcinomas (BCC) and cutaneous squamous cell carcinomas (cSCC) and represents the most common cancer in Europe and North America. Both entities are characterized by a very high mutational burden, mainly UV signature mutations. Predominately mutated genes in BCC belong to the sonic hedgehog pathway, whereas, in cSCC, TP53, CDKN2A, NOTCH1/2 and others are most frequently mutated. In addition, the dysregulation of factors associated with epithelial to mesenchymal transition (EMT) was shown in invasive cSCC. The expression of factors associated with tumorigenesis can be controlled in several ways and include non-coding RNA molecules, such as micro RNAs (miRNA) long noncoding RNAs (lncRNA) and circular RNAs (circRNA). To update findings on circRNA in KC, we reviewed 13 papers published since 2016, identified in a PubMed search. In both BCC and cSCC, numerous circRNAs were identified that were differently expressed compared to healthy skin. Some of them were shown to target miRNAs that are also dysregulated in KC. Moreover, some studies confirmed the biological functions of individual circRNAs involved in cancer development. Thus, circRNAs may be used as biomarkers of disease and disease progression and represent potential targets of new therapeutic approaches for KC.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2443 ◽  
Author(s):  
Miguel A. Ortega ◽  
Oscar Fraile-Martínez ◽  
Luis G. Guijarro ◽  
Carlos Casanova ◽  
Santiago Coca ◽  
...  

Breast cancer is the most prevalent and incident female neoplasm worldwide. Although survival rates have considerably improved, it is still the leading cause of cancer-related mortality in women. MicroRNAs are small non-coding RNA molecules that regulate the posttranscriptional expression of a wide variety of genes. Although it is usually located in the cytoplasm, several studies have detected a regulatory role of microRNAs in other cell compartments such as the nucleus or mitochondrion, known as “mitomiRs”. MitomiRs are essential modulators of mitochondrion tasks and their abnormal expression has been linked to the aetiology of several human diseases related to mitochondrial dysfunction, including breast cancer. This review aims to examine basic knowledge of the role of mitomiRs in breast cancer and discusses their prospects as biomarkers or therapeutic targets.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1711 ◽  
Author(s):  
Conor P. Duffy ◽  
Claire E. McCoy

Multiple sclerosis (MS) is an autoimmune disorder characterised by demyelination of central nervous system neurons with subsequent damage, cell death and disability. While mechanisms exist in the CNS to repair this damage, they are disrupted in MS and currently there are no treatments to address this deficit. In recent years, increasing attention has been paid to the influence of the small, non-coding RNA molecules, microRNAs (miRNAs), in autoimmune disorders, including MS. In this review, we examine the role of miRNAs in remyelination in the different cell types that contribute to MS. We focus on key miRNAs that have a central role in mediating the repair process, along with several more that play either secondary or inhibitory roles in one or more aspects. Finally, we consider the current state of miRNAs as therapeutic targets in MS, acknowledging current challenges and potential strategies to overcome them in developing effective novel therapeutics to enhance repair mechanisms in MS.


2011 ◽  
Vol 121 (4) ◽  
pp. 141-158 ◽  
Author(s):  
Reinhold Munker ◽  
George A. Calin

The diagnosis of cancer has undergone major changes in the last 40 years. Once based purely on morphology, diagnosis has come to incorporate immunological, cytogenetic and molecular methods. Many cancers, especially leukaemias, are now defined by molecular markers. Gene expression profiling based on mRNA has led to further refinement of the classification and diagnosis of cancer. More recently, miRNAs (microRNAs), among other small non-coding RNA molecules, have been discovered and found to be major players in cell biology. miRNAs, having both oncogenic and tumour-suppressive functions, are dysregulated in many types of cancer. miRNAs also interfere with metastasis, apoptosis and invasiveness of cancer cells. In the present review, we discuss recent advances in miRNA profiling in human cancer. We discuss both frequent and rare tumour types and give an outlook on future developments.


2021 ◽  
Vol 11 ◽  
Author(s):  
Dan Xie ◽  
Qin Pei ◽  
Jingyuan Li ◽  
Xue Wan ◽  
Ting Ye

The E2F family of transcription factors (E2Fs) consist of eight genes in mammals. These genes encode ten proteins that are usually classified as transcriptional activators or transcriptional repressors. E2Fs are important for many cellular processes, from their canonical role in cell cycle regulation to other roles in angiogenesis, the DNA damage response and apoptosis. A growing body of evidence demonstrates that cancer stem cells (CSCs) are key players in tumor development, metastasis, drug resistance and recurrence. This review focuses on the role of E2Fs in CSCs and notes that many signals can regulate the activities of E2Fs, which in turn can transcriptionally regulate many different targets to contribute to various biological characteristics of CSCs, such as proliferation, self-renewal, metastasis, and drug resistance. Therefore, E2Fs may be promising biomarkers and therapeutic targets associated with CSCs pathologies. Finally, exploring therapeutic strategies for E2Fs may result in disruption of CSCs, which may prevent tumor growth, metastasis, and drug resistance.


Sign in / Sign up

Export Citation Format

Share Document