scholarly journals Nanofabrication of Diamond-like Carbon Templates for Nanoimprint Lithography

2006 ◽  
Vol 956 ◽  
Author(s):  
L. Tao ◽  
S. Ramachandran ◽  
C. T. Nelson ◽  
L. J. Overzet ◽  
M. J. Goeckner ◽  
...  

ABSTRACTDiamond like carbon (DLC) films were deposited on Si and then patterned to form 40 nm features as nanoimprint templates. A plasma enhanced chemical vapor deposition (PECVD) system with CH4 precursor was used to deposit DLC films on Si and quartz substrates. Then these films were characterized using Raman spectroscopy, atomic force microscopy (AFM), nanoindentation, and contact angle measurement. By varying the RF power and pressure of the PECVD, DLC films with good uniformity, smooth surfaces (<0.2 nm RMS), low surface energy (∼40 mJ/m2), and high hardness (∼22 GPa) were achieved. Nanoimprint lithography and liftoff process were used to pattern Cr mask on DLC films. An inductively coupled plasma (ICP) etching process was performed with CF4 to transfer the patterns into the DLC films to form nanostructured template for nanoimprint. Water contact angles on the patterned DLC templates were measured and it was stable at about 70° under thermal annealing at 180 °C for more than 12 hours. With these DLC templates, UV and reversal UV nanoimprint lithography were carried out on SU-8 at typical imprint conditions and then the fidelity of pattern-transfer was investigated. These experimental results indicate that DLC is an excellent material for nanoimprint templates because of its high wear resistance, robust low surface energy, UV transparency, and ease of patterning.

Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 979 ◽  
Author(s):  
Chunfang Zhu ◽  
Haitao Yang ◽  
Hongbo Liang ◽  
Zhengyue Wang ◽  
Jun Dong ◽  
...  

Low surface energy materials have attracted much attention due to their properties and various applications. In this work, we synthesized and characterized a series of ultraviolet (UV)-curable fluorinated siloxane polymers with various fluorinated acrylates—hexafluorobutyl acrylate, dodecafluoroheptyl acrylate, and trifluorooctyl methacrylate—grafted onto a hydrogen-containing poly(dimethylsiloxane) backbone. The structures of the fluorinated siloxane polymers were measured and confirmed by proton nuclear magnetic resonance and Fourier transform infrared spectroscopy. Then the polymers were used as surface modifiers of UV-curable commercial polyurethane (DR-U356) at different concentrations (1, 2, 3, 4, 5, and 10 wt %). Among three formulations of these fluorinated siloxane polymers modified with DR-U356, hydrophobic states (91°, 92°, and 98°) were obtained at low concentrations (1 wt %). The DR-U356 resin is only in the hydrophilic state at 59.41°. The fluorine and siloxane element contents were investigated by X-ray photoelectron spectroscopy and the results indicated that the fluorinated and siloxane elements were liable to migrate to the surface of resins. The results of the friction recovering assays showed that the recorded contact angles of the series of fluorinated siloxane resins were higher than the original values after the friction-annealing progressing.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 471 ◽  
Author(s):  
Martha Claros ◽  
Milena Setka ◽  
Yecid P. Jimenez ◽  
Stella Vallejos

Non-modified (ZnO) and modified (Fe2O3@ZnO and CuO@ZnO) structured films are deposited via aerosol assisted chemical vapor deposition. The surface modification of ZnO with iron or copper oxides is achieved in a second aerosol assisted chemical vapor deposition step and the characterization of morphology, structure, and surface of these new structured films is discussed. X-ray photoelectron spectrometry and X-ray diffraction corroborate the formation of ZnO, Fe2O3, and CuO and the electron microscopy images show the morphological and crystalline characteristics of these structured films. Static water contact angle measurements for these structured films indicate hydrophobic behavior with the modified structures showing higher contact angles compared to the non-modified films. Overall, results show that the modification of ZnO with iron or copper oxides enhances the hydrophobic behavior of the surface, increasing the contact angle of the water drops at the non-modified ZnO structures from 122° to 135° and 145° for Fe2O3@ZnO and CuO@ZnO, respectively. This is attributed to the different surface properties of the films including the morphology and chemical composition.


2008 ◽  
Vol 8 (5) ◽  
pp. 2613-2617 ◽  
Author(s):  
Jianhui Wang ◽  
Sam Zhang ◽  
Huili Wang ◽  
Ping Xu ◽  
Dwight Iha ◽  
...  

A Magnetic film of ternary CoCrTa alloy was deposited onto textured NiP/Al substrate. Then, an atomic (8 Å) layer of ruthenium (Ru) film was sputtered before a layer of hydrogenated amorphous carbon (a-C:H) was deposited by hot filament Plasma Enhanced Chemical Vapor Deposition method. Dynamic remanent magnetization and thickness product (MrT) measurement showed that samples without Ru interlayer were susceptible to plasma damage during carbon deposition compared to samples with Ru interlayer. The impact was more obvious as the substrate bias was increased during carbon deposition. Having an intermediate layer of ruthenium film in between magnetic layer and carbon overcoat made magnetic performance of the film more stable. After annealed for 30 minutes under 1 atm of N2 environment, MrT values dropped drastically in samples without Ru interlayer but varied only a little in samples with the interlayer. Water contact angle measurement showed little difference in surface energy with or without the interlayer. XPS studies indicated that Tantalum carbide formed in samples without Ru interlayer. Formation of metal carbide was not found in samples with Ru interlayer.


1995 ◽  
Vol 383 ◽  
Author(s):  
M. R. Houston ◽  
R. T. Howe ◽  
K Komvopoulos ◽  
R. Maboudian

ABSTRACTThe surface properties of diamond-like carbon (DLC) films deposited by a vacuum arc technique on smooth silicon wafers are presented with specific emphasis given to stiction reduction in microelectromechanical systems (MEMS). The low deposition temperatures afforded by the vacuum arc technique should allow for easy integration of the DLC films into the current fabrication process of typical surface micromachines by means of a standard lift-off processing technique. Using X-ray photoelectron spectroscopy (XPS), contact angle analysis, and atomic force microscopy (AFM), the surface chemistry, microroughness, hydrophobicity, and adhesion forces of DLC-coated Si(100) surfaces were measured and correlated to the measured water contact angles. DLC films were found to be extremely smooth and possess a water contact angle of 87°, which roughly corresponds to a surface energy of 22 mJ/m2. It is shown that the pull-off forces measured by AFM correlate well with the predicted capillary forces. Pull-off forces are reduced on DLC surfaces by about a factor of five compared to 10 nN pull-off forces measured on the RCA-cleaned silicon surfaces. In the absence of meniscus forces, the overall adhesion force is expected to decrease by over an order of magnitude to the van der Waals attractive force present between two DLC-coated surfaces- To further improve the surface properties of DLC, films were exposed to a fluorine plasma which increased the contact angle to 99° and lowered the pull-off force by approximately 20% over that obtained with as-deposited DLC. The significance of these results is discussed with respect to stiction reduction in micromachines.


2009 ◽  
Vol 79-82 ◽  
pp. 1451-1454 ◽  
Author(s):  
Zhi Qiu Zhang ◽  
Wen Fang Yang ◽  
Zhen Ya Gu ◽  
Rui Ting Huo

Lotus effect is well-known to be governed by chemical properties and nanotextures of the surfaces. In this paper, a method with two-steps treatment technology was applied to develop the superhydrophobic polyvinylidene fruoride(PVDF) membrane with the property of anti-contamination and self-cleaning. First, the PVDF membrane was treated by oxygen plasma so as to get the reactive groups. Second, this film was deposited by perfluoroalkylethyl acrylate precursor/Ar gas via plasma-enhanced chemical vapor deposition (PECVD). The modified film surface exhibited ultra water-repellent ability, showing that the water contact angles was larger than 150 °and the dynamic contact angles was usually lower than 5°.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7683
Author(s):  
Denis Nazarov ◽  
Aida Rudakova ◽  
Evgenii Borisov ◽  
Anatoliy Popovich

Three-dimensional printed nitinol (NiTi) alloys have broad prospects for application in medicine due to their unique mechanical properties (shape memory effect and superplasticity) and the possibilities of additive technologies. However, in addition to mechanical properties, specific physicochemical characteristics of the surface are necessary for successful medical applications. In this work, a comparative study of additively manufactured (AM) NiTi samples etched in H2SO4/H2O2, HCl/H2SO4, and NH4OH/H2O2 mixtures was performed. The morphology, topography, wettability, free surface energy, and chemical composition of the surface were studied in detail. It was found that etching in H2SO4/H2O2 practically does not change the surface morphology, while HCl/H2SO4 treatment leads to the formation of a developed morphology and topography. In addition, exposure of nitinol to H2SO4/H2O2 and HCl/H2SO4 contaminated its surface with sulfur and made the surface wettability unstable in air. Etching in NH4OH/H2O2 results in surface cracking and formation of flat plates (10–20 microns) due to the dissolution of titanium, but clearly increases the hydrophilicity of the surface (values of water contact angles are 32–58°). The etch duration (30 min or 120 min) significantly affects the morphology, topography, wettability and free surface energy for the HCl/H2SO4 and NH4OH/H2O2 etched samples, but has almost no effect on surface composition.


Author(s):  
C. C. Wachesk ◽  
S. H. Seabra ◽  
T. A. T. Dos Santos ◽  
V. J. Trava-Airoldi ◽  
A. O. Lobo ◽  
...  

AbstractHybrid diamond-like carbon (DLC) with incorporated titanium dioxide (TiO2) nanoparticle coatings have low friction coefficient, high wear resistance, high hardness, biocompatibility, and high chemical stability. They could be employed to modify biomedical alloys surfaces for numerous applications in biomedical engineering. Here we investigate for the first time the in vivo inflammatory process of DLC coatings with incorporated TiO2 nanoparticles. TiO2-DLC films were grown on AISI 316 stainless-steel substrates using plasma-enhanced chemical vapor deposition. The coated substrates were implanted in CF1 mice peritoneum. The in vivo cytotoxicity and biocompatibility of the samples were analyzed from macrophage lavage. Analysis in the first weeks after implantation could be helpful to evaluate the acute cytotoxicity generated after a possible inflammatory process. The in vivo results showed no inflammatory process. A significant increase in nitric oxide production on the uncoated substrates was confirmed through cytometry, and the coated substrates demonstrated biocompatibility. The presence of TiO2 nanoparticles enhanced the wound healing activity, due to their astringent and antimicrobial properties. DLC and TiO2-DLC coatings were considered biocompatible, and the presence of TiO2 nanoparticles reduced the inflammatory reactions, increasing DLC biocompatibility.


2020 ◽  
Vol 12 (6) ◽  
pp. 779-783
Author(s):  
Man Zhang ◽  
Liang-Ping Xia ◽  
Sui-Hu Dang ◽  
A-Xiu Cao ◽  
Qi-Ling Deng ◽  
...  

In this paper, we propose a novel kind of UV click-polymerization thiol-ene copolymers as nanoimprint lithography resists for sub-70 nm resolution patterns. High-precision mold imprint and release are two of the most critical steps of nanoimprint lithography, which requires the resists with properties of excellent conformal replication and low surface energy. Conventional UV-curable resists used in nanoimprint lithography, such as acrylate, epoxy resin, and vinyl ether, cannot satisfy all these properties requirements because they exhibit surface oxygen inhibition during polymerization, or materials fracture and delamination during mold releasing. A novel kind of thiol-ene copolymers have been investigated in this study, which have many properties favorable for use as nanoimprint lithography resists to imprint sub-70 nm and high-aspect-ratio nanostructures. These properties include sufficiently low viscosity and high Young's modulus, low surface energy for easy demolding, polymerization in benign ambient, and in particular, high chemical-etch resistance. These excellent properties give improve nanoimprinting results.


2011 ◽  
Vol 687 ◽  
pp. 562-566
Author(s):  
Yan Zhang ◽  
Zhan Ping Zhang ◽  
Yu Hong Qi ◽  
Xin Rui Gao

Fluoro-polymer is of great importance as coating materials because of their excellent resistance to high temperature, chemicals and organic solvents. In the interest of researching low surface energy coating, a kind of copolymer was prepared by solution polymerization method, using methyl methacrylate, butyl acrylate, 2-hydroxyethyl acrylate and perfluoroalkyl ethyl acrylate whose length of fluorinated carbon chain was from 6 to12. Solid content, monomer conversion rate and viscosity of the copolymer were measured. Parallel experiments were separately carried out with different contents of initiator and fluorinated monomer. The results showed that the water contact angle of the film becomes bigger with the increase of the content of fluorinated monomer, with the biggest value in 108° when the content of fluorinated monomer content is 30 wt%, but only changing little after content of fluorinated monomer reaches up 15 wt%. The results indicated that the copolymer can offer the best property combination when the contents of fluorinated monomer and initiator were 15 wt% and 1.8 wt%.


Membranes ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 17 ◽  
Author(s):  
Sri Mulyati ◽  
Syawaliah Muchtar ◽  
Mukramah Yusuf ◽  
Nasrul Arahman ◽  
Sofyana Sofyana ◽  
...  

This paper reports the application of silica derived from natural biomasses of rice husk and bagasse ashes as membrane modifying agents. The modification was conducted on poly(ether sulfone) (PES) membrane by blending the silica into the dope solution. The modification was aimed to improve the structure and hydraulic performance of the resulting PES membrane. The effects of silica addition to the membrane system were evaluated through the analysis of change in chemical structure using ATR-FTIR, surface morphological change using AFM, and surface hydrophilicity using water contact angle measurement. SEM and AFM images show the silica loading significantly affects the membranes morphologies. Silica loading also promotes hydrophilic property as shown by the decrease in water contact angles from 82° to 52–60° due to the presence of polar groups in some residual silica in the membrane matrix. Silica blending also leads to the formation of membranes with higher permeability of up to three folds but lower humic acid rejection (78–62%). The findings indicate the role of silica to enhance the membrane pore size. The ability of membrane to reject humic acid (of 0.8 nm minimum diameter) indicating that the resulting membranes were in between tight ultrafiltration and nanofiltration type. Nonetheless, applying too-high silica concentration decreased the humic acid rejection most likely due to over enlargement of the membrane pore size.


Sign in / Sign up

Export Citation Format

Share Document