QTL mapping for heat tolerance related traits using backcross inbred lines in wheat (Triticum aestivum L.)

2020 ◽  
Vol 80 (03) ◽  
Author(s):  
Harikrishna . ◽  
Sunil . ◽  
Deepali Upadhyay ◽  
Rahul Gajghate ◽  
P. Shashikumara ◽  
...  

Heat stress is one of the most limiting factors for the production of wheat. Global warming and consequent changes in climate adversely affect wheat plant growth and yield. To elucidate genetic basis and map heat tolerance traits, a set of 134 backcross inbred lines (BILs) derived from the cross between WH730/*2 HD2733 was used. The population was evaluated under late sown (LS) and very late sown (VLS) conditions, by exposing to heat stress during rabi season. Positive association of normalized difference vegetation index (NDVI), thousand grain weight (TGW), grain weight per spike (GWS), biomass and grain yield (GY) under both production conditions was observed. However, canopy temperature (CT) and days to heading (DH) showed negative correlation with GY under heat stress. A total of 9 Quantitative trait loci (QTL) were discovered on 7 chromosomes, which includes 4 QTLs in LS and 5 QTLs under VLS condition. Combining the results of these QTLs revealed a major stable QTL for DH (qDH_iari_5A) on chromosome 5A with 23% and 26% explaining phenotypic variance under both sowing conditions. QTL for NDVI was detected on chromosome 1B while QTL for SL and GY on chromosome 2A. The identified QTLs in the genomic regions could be targeted for genetic improvement and marker assisted selection for heat tolerance in wheat.

2017 ◽  
Vol 9 (3) ◽  
pp. 1338-1342
Author(s):  
Amarjeet Kumar ◽  
Swati Swati ◽  
N. K. Singh ◽  
Birendra Prasad ◽  
Anil Kumar

To estimate the level of heat tolerance for different genotypes of bread wheat with respect to morphological characters under studied grains/ spike, grain weight/spike, grain filling duration (duration between the anthesis stage and the physiological maturity), 1000-kernel weight and grain yield/plant for yield. Physiological traits like relative injury (RI %), chlorophyll content, canopy temperature depression (CTD), were used in present investigation to contribute toward capability of plants to tolerate heat stress of the yield contributing traits during heat stress.The findings of present investigation had clearly explained that influences of environments on morpho physiological characters i.e. grain yield per plant (14886.15) and its attributing traits i.e. spike length (459.7), tillers per plant (622.34), spikelets per spike (278.1), 1000 kernel weight (13262.39), grain weight per spike (177.89) and number of grains per spike (2898.44) in wheat were highly significant and positive. Among the parent and their crosses had handsome amount of variations across the environment. The results of interaction for environments with parents, lines, testers and their crosses with respect to morpho physiological characters in wheat was found significant for some characters while variation was absent for other characters studied. Physiological traits like relative injury per cent, chlorophyll content and CTD were vital parameters to quantify the degree of heat stress to develop tolerant genotypes which is urgent and present need under changing climate scenario.


2021 ◽  
Vol 49 (4) ◽  
pp. 12501
Author(s):  
Adnan RASHEED ◽  
Mahmoud F. SELEIMAN ◽  
Muhammad NAWAZ ◽  
Athar MAHMOOD ◽  
Muhammad RIZWAN ANWAR ◽  
...  

Rice is an important cereal crop worldwide that serves as a dietary component for half of the world’s population. Climate change, especially global warming is a rising threat to crop production and food security. Therefore, enhancing rice growth and yield is a crucial challenge in stress-prone environments. Frequent episodes of heat stress threaten rice production all over the world. Breeders and agronomists undertake several techniques to ameliorate the adverse effects of heat stress to safeguard global rice production. The selection of suitable sowing time application of plant hormones, osmoprotectants and utilization of appropriate fertilizers and signaling molecules are essential agronomic practices to mitigate the adverse effects of heat stress on rice. Likewise, developing genotypes with improved morphological, biochemical, and genetic attributes is feasible and practical way to respond to this challenge. The creation of more genetic recombinants and the identification of traits responsible for heat tolerance could allow the selection of early-flowering cultivars with resistance to heat stress. This review details the integration of several agronomic, conventional breeding, and molecular approaches like hybridization, pure line selection, master-assisted-selection (MAS), transgenic breeding and CRRISPR/Cas9 that promise rapid and efficient development and selection of heat-tolerant rice genotypes. Such information’s could be used to determine the future research directions for rice breeders and other researchers working to improve the heat tolerance in rice.


Euphytica ◽  
2018 ◽  
Vol 214 (2) ◽  
Author(s):  
Dharminder Bhatia ◽  
Rod A. Wing ◽  
Yeisoo Yu ◽  
Kapeel Chougule ◽  
Dave Kudrna ◽  
...  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11218
Author(s):  
Haoliang Yan ◽  
Chunhu Wang ◽  
Ke Liu ◽  
Xiaohai Tian

There is concern over the impact of global warming on rice production due increased heat stress, coupled with decreased relative humidity (RH). It is unknown how rice yield and quality are affected by heat stress and decreased RH during the grain filling stage. We conducted experiments in controlled growth chambers on six rice cultivars, varying in heat tolerance using 12 combinative treatments of three factors: two RH levels (75% and 85%), three temperature levels (the daily maximum temperature at 33 °C, 35 °C, and 37 °C), and two durations (8 d and 15 d after anthesis). Results showed that RH75% with temperature treatments significantly reduced grain weight, which was higher than RH85%. The same trend was also observed for both head rice rate and chalkiness. R168 was the most heat-tolerant cultivar, but it still had some differences in grain weight, head rice rate, and chalkiness between the two RH regimes. The lower RH was most detrimental at 35 °C, and to a lesser extent at 33 °C, but had a negligible effect at 37 °C. Our results provide a better understanding of temperature and RH’s interaction effects on rice quality during the grain filling stage, suggesting that RH should be considered in heat tolerance screening and identification to facilitate rice breeding and genetic improvement.


Author(s):  
Gaëtan Touzy ◽  
Stéphane Lafarge ◽  
Elise Redondo ◽  
Vincent Lievin ◽  
Xavier Decoopman ◽  
...  

Abstract Key message The response of a large panel of European elite wheat varieties to post-anthesis heat stress is influenced by 17 QTL linked to grain weight or the stay-green phenotype. Abstract Heat stress is a critical abiotic stress for winter bread wheat (Triticum aestivum L.) especially at the flowering and grain filling stages, limiting its growth and productivity in Europe and elsewhere. The breeding of new high-yield and stress-tolerant wheat varieties requires improved understanding of the physiological and genetic bases of heat tolerance. To identify genomic areas associated with plant and grain characteristics under heat stress, a panel of elite European wheat varieties (N = 199) was evaluated under controlled conditions in 2016 and 2017. A split-plot design was used to test the effects of high temperature for ten days after flowering. Flowering time, leaf chlorophyll content, the number of productive spikes, grain number, grain weight and grain size were measured, and the senescence process was modeled. Using genotyping data from a 280 K SNP chip, a genome-wide association study was carried out to test the main effect of each SNP and the effect of SNP × treatment interaction. Genotype × treatment interactions were mainly observed for grain traits measured on the main shoots and tillers. We identified 10 QTLs associated with the main effect of at least one trait and seven QTLs associated with the response to post-anthesis heat stress. Of these, two main QTLs associated with the heat tolerance of thousand-kernel weight were identified on chromosomes 4B and 6B. These QTLs will be useful for breeders to improve grain yield in environments where terminal heat stress is likely to occur.


2020 ◽  
Author(s):  
Jing Wang ◽  
Chengliang Liang ◽  
Sha Yang ◽  
Jingshuang Song ◽  
Xuefeng Li ◽  
...  

Abstract Background: As one of the most important vegetable crops, pepper has rich nutritional value and high economic value. Increasing heat stress due to the global warming has a negative impact on the growth and yield of pepper. Result: In the present study, we investigated the changes of phenotype, physiology, and proteome in heat-tolerant (17CL30) and heat-sensitive (05S180) pepper seedlings in response to heat stress. Phenotypic and physiological changes showed that 17CL30 had a stronger ability to resist heat stress compared with 05S180. In proteomic analysis, a total of 3,874 proteins were identified, and 1,591 proteins were considered to participate in the process of heat stress response. According to bioinformatic analysis of heat-responsive proteins, the heat tolerance of 17CL30 might be related to a higher photosynthesis, signal transduction, carbohydrate metabolism, and stress defense, compared with 05S180. Conclusion: To understand the heat stress response mechanism of pepper, an iTRAQ-based quantitative proteomic analysis was employed to identify possible heat-responsive proteins and metabolic pathways in 17CL30 and 05S180 pepper seedlings under heat stress. This study provided new insights into the molecular mechanisms involved in heat tolerance of pepper and might offer supportive reference for the breeding of new pepper variety with heat resistance.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 449
Author(s):  
Sophoanrith Ro ◽  
Leangsrun Chea ◽  
Sreymey Ngoun ◽  
Zachary P. Stewart ◽  
Siranet Roeurn ◽  
...  

Heat stress is one of the production constraints for tomato (Solanum lycopersicum L.) due to unfavorable, above optimum temperatures. This research was undertaken to evaluate growth and fruit yield of tomato genotypes under three contrasting growing conditions (i.e., optimal temperature in field-, high temperature in field- and high temperature in greenhouse conditions) to determine their relative heat tolerance. Eleven tomato genotypes, including two local check varieties, were evaluated, and data on growth and yield were measured and analyzed. The interactions between the genotypes and growing conditions for all yield traits were significant. In general, the performance of tomato under optimal temperature field conditions was better than under high temperature field- and greenhouse conditions. Genotypes CLN1621L, CLN2026D, CLN3212C, and KK1 had consistently greater fruit yield per plant in all growing conditions. Although the local genotype, Neang Tamm, had lower yield under optimal conditions, it performed moderately well under high temperature field- and high temperature greenhouse conditions, and yield decrease under high temperature condition was minimal. Genotype CLN1621L had stable fruit setting compared to other genotypes under high temperature conditions. Since fruit setting and yield are important traits for heat tolerance, genotypes CLN1621L and Neang Tamm are potential candidates for breeding programs focused on improved yield and heat stress tolerance.


2021 ◽  
Author(s):  
Yaswant Kumar Pankaj ◽  
Lalit Pal ◽  
Ragupathi Nagarajan ◽  
Kulvinder Singh Gill ◽  
Vishnu Kumar ◽  
...  

The elevating temperature makes heat stress one of the major issues for wheat production globally. To elucidate genetic basis and map heat tolerance traits, a set of 166 doubled haploid lines (DHLs) derived from the cross between PBW3438/IC252874 was used. The population was evaluated under Normal sown (NS) and late sown (LS) conditions, by exposing to heat stress during rabi season. The canopy temperature (CT) showed positive correlations with grain yield, whereas Soil plant analysis development (SPAD) was not significantly correlated and associated with GY in both the normal and late sown conditions. Composite interval mapping (CIM) identified total 12 Quantitative trait loci (QTLs) viz., 2 (Normal sown), 10 (late sown) mapped on linkage groups 1A, 1D, 2B, 2D, 3B, 4D, 5B, and 6D, during both the crop seasons 2017-18 and 2018-19. Combining the results of these QTLs revealed a major stable QTL for grain yield (GY) on chromosome 3B with 11.84% to 21.24% explaining phenotypic variance under both sowing conditions. QTL for CT and SPAD was detected on chromosome 1A while QTL for GY on chromosomes 3B and 5B. The identified QTLs in the genomic regions could be targeted for genetic improvement and marker-assisted selection for heat tolerance in wheat. The tools like SPAD and CT could be exploited to screen a large number of breeding lines.


HortScience ◽  
2019 ◽  
Vol 54 (9) ◽  
pp. 1470-1476 ◽  
Author(s):  
Adam Bolton ◽  
Aneela Nijabat ◽  
Muhammad Mahmood-ur-Rehman ◽  
Naima Huma Naveed ◽  
A.T.M. Majharul Mannan ◽  
...  

Carrot production is constrained by high levels of heat stress during the germination stage in many global regions. Few studies have been published evaluating the effect of heat stress on carrot seed germination or screening for genetic heat stress tolerance. The objectives of this study were to evaluate the response of diverse carrot germplasm to heat stress, identify heat-tolerant germplasm that may be used by plant breeders, and define the appropriate temperature for assessing heat tolerance in germinating carrot seed. To identify an appropriate screening temperature, three commercial hybrids and an open pollinated variety were evaluated at five temperatures (24, 32.5, 35, 37.5, and 40 °C). In preliminary studies, 35 °C was identified as the optimal temperature for screening heat tolerance of carrot seed. Cultivated and wild carrot plant introductions (PIs) (n = 270) from the U.S. Department of Agriculture (USDA) National Plant Germplasm System (NPGS) representing 41 countries, inbred lines from the USDA Agricultural Research Service (n = 15), and widely grown commercial hybrids (n = 8) were evaluated for heat tolerance under heat stress and nonstress conditions (35 °C and 24 °C, respectively) by calculating absolute decrease in percent germination (AD), inhibition index (II), relative heat tolerance (RHT), and heat tolerance index (HTI). All measurements of heat tolerance identified significant differences among accessions; AD ranged from −13.0% to 86.7%, II ranged from 35.7% to 100.0%, RHT ranged from 0 to 1.36, and HTI ranged from 0.0 to 1.45. The broad-sense heritability (H2) calculations ranged from 0.64 to 0.86 for different traits, indicating a moderately strong genetic contribution to the phenotypic variation. Several wild carrot accessions and inbred lines displayed low levels of heat tolerance, whereas cultivated accessions PI 643114 (United States), PI 652400 and PI 652403 (Turkey), PI 652208 (China), and PI 652403 (Russia) were most heat tolerant. This is the first evaluation of heritability for heat stress tolerance during carrot seed germination, the first measure of HTI, and the first correlation calculation between heat and salt tolerance during germination in carrot.


Author(s):  
S. Banumathy ◽  
K. Veni ◽  
R. Anandhababu ◽  
P. Arunachalam ◽  
M. Raveendran ◽  
...  

Correlation, path coefficient and stress indices for yield and its components were studied in 32 Saltol introgressed backcross inbred lines (BIL) of rice along with a tolerant parent FL 478, susceptible check IR 29 and two recurrent parents viz., ADT 37 and CR 1009 Sub1 under normal and saline environments during rabi, 2016. Grain yield per plant showed positive significant association with all traits except 100 grain weight under normal environment and it showed positive significant association with all traits except panicle length, spikelet fertility and 100 grain weight under saline condition. The direct positive effects of number of tillers per plant, number of productive tillers per plant, number of filled grains per panicle and spikelet fertility on grain yield under normal and saline environment indicating direct selection of these traits would be effective for increasing grain yield. Under salinity, negative and significant association was shown by stress susceptibility index (SSI) and grain yield in contrast to positive and significant association shown by stress tolerance index (STI) and grain yield. These associations could be useful in identifying salt tolerant and sensitive high yielding genotypes. The lines viz., BIL 108, BIL 752, BIL 1101, BIL 1079, BIL 1094 and BIL 1095 had exhibited higher values of stress tolerance index in salinity.


Sign in / Sign up

Export Citation Format

Share Document