scholarly journals Differentially Expressed Genes Related to Flowering Transition between Once- and Continuous-Flowering Roses

Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 58
Author(s):  
Xingwan Yi ◽  
Huabei Gao ◽  
Yi Yang ◽  
Shumin Yang ◽  
Le Luo ◽  
...  

Roses are the most important cut flower crops and widely used woody ornamental plants in gardens throughout the world, and they are model plants for studying the continuous-flowering trait of woody plants. To analyze the molecular regulation mechanism of continuous flowering, comparative transcriptome data of once- and continuous-flowering roses in our previous study were used to conduct weighted gene co-expression network analysis (WGCNA) to obtain the candidate genes related to flowering transitions. The expression patterns of candidate genes at different developmental stages between Rosa chinensis “Old Blush” (continuous-flowering cultivar) and R. “Huan Die” (once-flowering cultivar) were investigated, and the relationship of the key gene with the endogenous hormone was analyzed. The results showed that the expression trends of VIN3-LIKE 1 (VIL1), FRIGIDA- LIKE 3 (FRI3), APETALA 2- LIKE (AP2-like) and CONSTANS-LIKE 2 (CO-like 2) genes were significantly different between “Old Blush” and “Huan Die”, and the expression trends of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) and CO-like 2 were consistent in the flowering transition of “Old Blush” under different environments. The changes in cytokinin and gibberellic acid (GA3) content were different in the two rose cultivars. The overall change trend of the abscisic acid and GA3 in the flowering transition of “Old Blush” under different environments was consistent. The promoter sequence of CO-like 2 contained a P-box element associated with gibberellin response, as well as binding sites for transcription factors. In a word, we found CO-like 2 associated with continuous flowering and some factors that may synergistically regulate continuous flowering. The results provided a reference for elucidating the molecular regulatory mechanisms of continuous-flowering traits in roses.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Sadhana Singh ◽  
Himabindu Kudapa ◽  
Vanika Garg ◽  
Rajeev K. Varshney

Abstract Background Chickpea, pigeonpea, and groundnut are the primary legume crops of semi-arid tropics (SAT) and their global productivity is severely affected by drought stress. The plant-specific NAC (NAM - no apical meristem, ATAF - Arabidopsis transcription activation factor, and CUC - cup-shaped cotyledon) transcription factor family is known to be involved in majority of abiotic stresses, especially in the drought stress tolerance mechanism. Despite the knowledge available regarding NAC function, not much information is available on NAC genes in SAT legume crops. Results In this study, genome-wide NAC proteins – 72, 96, and 166 have been identified from the genomes of chickpea, pigeonpea, and groundnut, respectively, and later grouped into 10 clusters in chickpea and pigeonpea, while 12 clusters in groundnut. Phylogeny with well-known stress-responsive NACs in Arabidopsis thaliana, Oryza sativa (rice), Medicago truncatula, and Glycine max (soybean) enabled prediction of putative stress-responsive NACs in chickpea (22), pigeonpea (31), and groundnut (33). Transcriptome data revealed putative stress-responsive NACs at various developmental stages that showed differential expression patterns in the different tissues studied. Quantitative real-time PCR (qRT-PCR) was performed to validate the expression patterns of selected stress-responsive, Ca_NAC (Cicer arietinum - 14), Cc_NAC (Cajanus cajan - 15), and Ah_NAC (Arachis hypogaea - 14) genes using drought-stressed and well-watered root tissues from two contrasting drought-responsive genotypes of each of the three legumes. Based on expression analysis, Ca_06899, Ca_18090, Ca_22941, Ca_04337, Ca_04069, Ca_04233, Ca_12660, Ca_16379, Ca_16946, and Ca_21186; Cc_26125, Cc_43030, Cc_43785, Cc_43786, Cc_22429, and Cc_22430; Ah_ann1.G1V3KR.2, Ah_ann1.MI72XM.2, Ah_ann1.V0X4SV.1, Ah_ann1.FU1JML.2, and Ah_ann1.8AKD3R.1 were identified as potential drought stress-responsive candidate genes. Conclusion As NAC genes are known to play role in several physiological and biological activities, a more comprehensive study on genome-wide identification and expression analyses of the NAC proteins have been carried out in chickpea, pigeonpea and groundnut. We have identified a total of 21 potential drought-responsive NAC genes in these legumes. These genes displayed correlation between gene expression, transcriptional regulation, and better tolerance against drought. The identified candidate genes, after validation, may serve as a useful resource for molecular breeding for drought tolerance in the SAT legume crops.


2018 ◽  
Vol 11 (2) ◽  
pp. 114-120
Author(s):  
Lilis Maghfuroh

In general, the process of each child's developmental stages is the same, that is the result of the maturation process. But in accomplishment, every child has a different speed.  Based on the initial survey 5 (50%) children doubt in the development. The purpose of this study was to determine the relationship among nutritional status with the development of children age toddler. This research design using correlation analytical method with Cross Sectional approach. The number of 45 samples of children under five with simple random sampling technique with the independent variable of nutritional status and the dependent variable of development, analysis using Spearmen test with ρ <0.05. The test results obtained significant 0.002 (ρ <0.05).  Shows there is a relationship of nutritional status with the development of children age toddler. Mother's efforts to improve the development of toddler age children by improving nutritional status that includes 4 healthy 5 perfect in accordance with the needs of children aged toddler and provides stimulation of development through the provision of educational games and immediately bring the child to health personnel if there is suspected deviation of development


2020 ◽  
Vol 21 (4) ◽  
pp. 1337 ◽  
Author(s):  
Weida Lin ◽  
Yueling Li ◽  
Qiuwei Lu ◽  
Hongfei Lu ◽  
Junmin Li

To assess changes of metabolite content and regulation mechanism of the phenolic acid biosynthesis pathway at different developmental stages of leaves, this study performed a combined metabolome and transcriptome analysis of Cyclocarya paliurus leaves at different developmental stages. Metabolite and transcript profiling were conducted by ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometer and high-throughput RNA sequencing, respectively. Transcriptome identification showed that 58 genes were involved in the biosynthesis of phenolic acid. Among them, 10 differentially expressed genes were detected between every two developmental stages. Identification and quantification of metabolites indicated that 14 metabolites were located in the phenolic acid biosynthetic pathway. Among them, eight differentially accumulated metabolites were detected between every two developmental stages. Association analysis between metabolome and transcriptome showed that six differentially expressed structural genes were significantly positively correlated with metabolite accumulation and showed similar expression trends. A total of 128 transcription factors were identified that may be involved in the regulation of phenolic acid biosynthesis; these include 12 MYBs and 10 basic helix–loop–helix (bHLH) transcription factors. A regulatory network of the phenolic acid biosynthesis was established to visualize differentially expressed candidate genes that are involved in the accumulation of metabolites with significant differences. The results of this study contribute to the further understanding of phenolic acid biosynthesis during the development of leaves of C. paliurus.


Genome ◽  
2015 ◽  
Vol 58 (6) ◽  
pp. 305-313 ◽  
Author(s):  
Jagesh Kumar Tiwari ◽  
Sapna Devi ◽  
S. Sundaresha ◽  
Poonam Chandel ◽  
Nilofer Ali ◽  
...  

Genes involved in photoassimilate partitioning and changes in hormonal balance are important for potato tuberization. In the present study, we investigated gene expression patterns in the tuber-bearing potato somatic hybrid (E1-3) and control non-tuberous wild species Solanum etuberosum (Etb) by microarray. Plants were grown under controlled conditions and leaves were collected at eight tuber developmental stages for microarray analysis. A t-test analysis identified a total of 468 genes (94 up-regulated and 374 down-regulated) that were statistically significant (p ≤ 0.05) and differentially expressed in E1-3 and Etb. Gene Ontology (GO) characterization of the 468 genes revealed that 145 were annotated and 323 were of unknown function. Further, these 145 genes were grouped based on GO biological processes followed by molecular function and (or) PGSC description into 15 gene sets, namely (1) transport, (2) metabolic process, (3) biological process, (4) photosynthesis, (5) oxidation-reduction, (6) transcription, (7) translation, (8) binding, (9) protein phosphorylation, (10) protein folding, (11) ubiquitin-dependent protein catabolic process, (12) RNA processing, (13) negative regulation of protein, (14) methylation, and (15) mitosis. RT-PCR analysis of 10 selected highly significant genes (p ≤ 0.01) confirmed the microarray results. Overall, we show that candidate genes induced in leaves of E1-3 were implicated in tuberization processes such as transport, carbohydrate metabolism, phytohormones, and transcription/translation/binding functions. Hence, our results provide an insight into the candidate genes induced in leaf tissues during tuberization in E1-3.


2007 ◽  
Vol 4 (1) ◽  
pp. 123-126 ◽  
Author(s):  
James F Gillooly ◽  
Gustavo A Londoño ◽  
Andrew P Allen

Biologists have long sought a means by which to quantify similarities and differences in embryonic development across species. Here we present a quantitative approach for predicting the timing of developmental events based on principles of allometry and biochemical kinetics. Data from diverse oviparous species support model predictions that most variation in the time required to reach one early developmental stage—the time to first heartbeat—is explained by the body size and temperature dependence of metabolic rate. Furthermore, comparisons of this stage with later developmental stages suggest that, after correcting for size and temperature, the relationship of metabolic rate to the rate of embryogenesis is approximately invariant across taxonomic groups and stages of ontogeny.


2016 ◽  
Vol 22 (12) ◽  
pp. 1158-1172 ◽  
Author(s):  
Tomasz Hanć ◽  
Monika Dmitrzak-Węglarz ◽  
Aneta Borkowska ◽  
Tomasz Wolańczyk ◽  
Natalia Pytlińska ◽  
...  

Objective: The aim of the study was to assess the relationship of overweight, the polymorphisms of selected candidate genes, and deficits in the executive functions among children with ADHD. Method: We examined 109 boys with ADHD aged between 7 and 17 years. The study indicated variants of 14 polymorphisms in eight candidate genes. We applied seven neuropsychological tests to evaluate the executive functions. Overweight was diagnosed on the basis of the guidelines of the International Obesity Task Force. Results: Analyses revealed significant association between DRD4 rs1800955, SNAP25 rs363039 and rs363043, 5HTR2A rs17288723, and overweight in boys with ADHD. There were no significant differences in the level of neuropsychological test results between patients with overweight and without overweight. Conclusion: Overweight in boys with ADHD is associated with polymorphisms in three candidate genes: DRD4, SNAP25, and 5HTR2A, but not through conditioning deficits in cognitive functions.


2019 ◽  
Vol 62 (2) ◽  
pp. 146-157
Author(s):  
László Csambalik ◽  
Andrea Tóbiás

This review focuses on yeast suspensions applied with the aim to enhance nutritional content of agricultural products. Seventy one publications were studied, and their details summarized in tables, according to the following plant groups: 1/ arable plants, 2/ vegetables, 3/ medicinal and ornamental plants. It was found that the experimental designs in these papers were inconsistent in most cases and, regardless to plant species used, the concentration of yeast extract, time of application, and repetitions of the treatment were fundamentally different, making evaluation of the methodologies difficult. However, all studies agreed in the positive impact of yeast extracts on nutritional parameters. Therefore, it is advisable to perform further studies to clarify the relationship of individual nutritional parameters to spraying dose, timing and repetition of yeast application.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 113
Author(s):  
Shutong Fan ◽  
Xixi Li ◽  
Siyu Lin ◽  
Yunpeng Li ◽  
Huixin Ma ◽  
...  

Foxl2 is an evolutionarily conserved female sex gene, which is specifically expressed in the ovary and mainly involved in oogenesis and ovarian function maintenance. However, little is known about the mechanism that regulates Foxl2 specific expression during the ovary development. In the present study, we constructed the gonadal yeast one-hybrid (Y1H) library of Chlamysfarreri with ovaries and testes at different developmental stages using the Gateway technology. The library capacity was more than 1.36 × 107 CFU, and the length of the inserted fragment was 0.75 Kb~2 Kb, which fully met the demand of yeast library screening. The highly transcriptional activity promoter sequence of C. farreri Foxl2 (Cf-Foxl2) was determined at −1000~−616 bp by dual-luciferase reporter (DLR) assay and was used as bait to screen possible transcription factors from the Y1H library. Eleven candidate factors, including five unannotated factors, were selected based on Y1H as well as their expressional differences between ovaries and testes and were verified for the first time to be involved in the transcriptional regulation of Cf-Foxl2 by RT-qPCR and DLR. Our findings provided valuable data for further studying the specific regulation mechanism of Foxl2 in the ovary.


1986 ◽  
Vol 14 (3) ◽  
pp. 363-442 ◽  
Author(s):  
George S. Howard ◽  
Don W. Nance ◽  
Pennie Myers

This article presents an integrative model for selecting a progression of therapist styles as clients move through developmental stages during the course of counseling and psychotherapy. The model, Adaptive Counseling and Therapy (ACT), suggests an eclectic approach to the utilization of techniques in therapy. The ACT approach is compared and contrasted with other integrative models that suggest an eclectic practice of therapy, with both similarities and divergent recommendations being noted. ACT is intended to be useful to practitioners in case conceptualization and in the application of effective treatment planning. The assessment instruments required to operationalize the central constructs of ACT theory are presented and described, and data on both the instruments' psychometric adequacy and the relationship of ACT constructs to therapy outcome are reviewed. Finally, the ways in which ACT can serve as a rich heuristic device for counseling practice, research, and supervision are delineated.


Genes ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 514 ◽  
Author(s):  
Zhen-Guang Wang ◽  
Li-Li Guo ◽  
Xiao-Ru Ji ◽  
Yi-He Yu ◽  
Guo-Hai Zhang ◽  
...  

Previous study has demonstrated that the riboflavin treatment promoted the early ripening of the ‘Kyoho’ grape berry. However, the molecular mechanism causing this was unclear. In order to reveal the regulation mechanism of riboflavin treatment on grape berry development and ripening, the different berry developmental stages of the ‘Kyoho’ berry treated with 0.5 mmol/L of riboflavin was sampled for transcriptome profiling. RNA-seq revealed that 1526 and 430 genes were up-regulated and down-regulated, respectively, for the comparisons of the treatment to the control. TCseq analysis showed that the expression patterns of most of the genes were similar between the treatment and the control, except for some genes that were related to the chlorophyll metabolism, photosynthesis–antenna proteins, and photosynthesis, which were revealed by the enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The differentially expressed genes and weighted gene co-expression network analysis (WGCNA) analysis identified some significantly differentially expressed genes and some hub genes, including up-regulation of the photosynthesis-related ELIP1 and growth and development-related GDSL; and down-regulation of the oxidative stress-related ATHSP22 and berry softening-related XTH32 and GH9B15. The results suggested that the riboflavin treatment resulted in the variations of the expression levels of these genes, and then led to the early ripening of the ‘Kyoho’ berry.


Sign in / Sign up

Export Citation Format

Share Document