scholarly journals Moderate Exercise Improves Experimental Cancer Cachexia by Modulating the Redox Homeostasis

Cancers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 285 ◽  
Author(s):  
Riccardo Ballarò ◽  
Fabio Penna ◽  
Fabrizio Pin ◽  
Mari Gómez-Cabrera ◽  
José Viña ◽  
...  

Cachexia is a debilitating syndrome that complicates the management of cancer patients. Muscle wasting, one of the main features of cachexia, is associated with hyper-activation of protein degradative pathways and altered mitochondrial function that could both result from impaired redox homeostasis. This study aimed to investigate the contribution of oxidative stress to cancer-induced cachexia in the presence or in the absence of moderate exercise training. Mice bearing the colon C26 carcinoma, either sedentary or exercised, were used. The former showed muscle wasting and redox imbalance, with the activation of an antioxidant response and with upregulation of markers of proteasome-dependent protein degradation and autophagy. Moderate exercise was able to relieve muscle wasting and prevented the loss of muscle strength; such a pattern was associated with reduced levels of Reactive Oxygen Species (ROS), carbonylated proteins and markers of autophagy and with improved antioxidant capacity. The muscle of sedentary tumor hosts also showed increased levels of molecular markers of mitophagy and reduced mitochondrial mass. Conversely, exercise in the C26 hosts led to increased mitochondrial mass. In conclusion, moderate exercise could be an effective non-pharmacological approach to prevent muscle wasting in cancer patients, decreasing muscle protein catabolism and oxidative stress and preserving mitochondria.

2018 ◽  
Vol 15 (4) ◽  
pp. 345-354 ◽  
Author(s):  
Barbara D'Orio ◽  
Anna Fracassi ◽  
Maria Paola Cerù ◽  
Sandra Moreno

Background: The molecular mechanisms underlying Alzheimer's disease (AD) are yet to be fully elucidated. The so-called “amyloid cascade hypothesis” has long been the prevailing paradigm for causation of disease, and is today being revisited in relation to other pathogenic pathways, such as oxidative stress, neuroinflammation and energy dysmetabolism. The peroxisome proliferator-activated receptors (PPARs) are expressed in the central nervous system (CNS) and regulate many physiological processes, such as energy metabolism, neurotransmission, redox homeostasis, autophagy and cell cycle. Among the three isotypes (α, β/δ, γ), PPARγ role is the most extensively studied, while information on α and β/δ are still scanty. However, recent in vitro and in vivo evidence point to PPARα as a promising therapeutic target in AD. Conclusion: This review provides an update on this topic, focussing on the effects of natural or synthetic agonists in modulating pathogenetic mechanisms at AD onset and during its progression. Ligandactivated PPARα inihibits amyloidogenic pathway, Tau hyperphosphorylation and neuroinflammation. Concomitantly, the receptor elicits an enzymatic antioxidant response to oxidative stress, ameliorates glucose and lipid dysmetabolism, and stimulates autophagy.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jiancheng Wang ◽  
Qiying Lu ◽  
Jianye Cai ◽  
Yi Wang ◽  
Xiaofan Lai ◽  
...  

Abstract Abnormal cancer antioxidant capacity is considered as a potential mechanism of tumor malignancy. Modulation of oxidative stress status is emerging as an anti-cancer treatment. Our previous studies have found that Nestin-knockdown cells were more sensitive to oxidative stress in non-small cell lung cancer (NSCLC). However, the molecular mechanism by which Nestin protects cells from oxidative damage remains unclear. Here, we identify a feedback loop between Nestin and Nrf2 maintaining the redox homeostasis. Mechanistically, the ESGE motif of Nestin interacts with the Kelch domain of Keap1 and competes with Nrf2 for Keap1 binding, leading to Nrf2 escaping from Keap1-mediated degradation, subsequently promoting antioxidant enzyme generation. Interestingly, we also map that the antioxidant response elements (AREs) in the Nestin promoter are responsible for its induction via Nrf2. Taken together, our results indicate that the Nestin–Keap1–Nrf2 axis regulates cellular redox homeostasis and confers oxidative stress resistance in NSCLC.


2011 ◽  
Vol 300 (2) ◽  
pp. R201-R211 ◽  
Author(s):  
James P. White ◽  
Kristen A. Baltgalvis ◽  
Melissa J. Puppa ◽  
Shuichi Sato ◽  
John W. Baynes ◽  
...  

Many diseases are associated with catabolic conditions that induce skeletal muscle wasting. These various catabolic states may have similar and distinct mechanisms for inducing muscle protein loss. Mechanisms related to muscle wasting may also be related to muscle metabolism since glycolytic muscle fibers have greater wasting susceptibility with several diseases. The purpose of this study was to determine the relationship between muscle oxidative capacity and muscle mass loss in red and white hindlimb muscles during cancer cachexia development in the Apc Min/+ mouse. Gastrocnemius and soleus muscles were excised from Apc Min/+ mice at 20 wk of age. The gastrocnemius muscle was partitioned into red and white portions. Body mass (−20%), gastrocnemius muscle mass (−41%), soleus muscle mass (−34%), and epididymal fat pad (−100%) were significantly reduced in severely cachectic mice ( n = 8) compared with mildly cachectic mice ( n = 6). Circulating IL-6 was fivefold higher in severely cachectic mice. Cachexia significantly reduced the mitochondrial DNA-to-nuclear DNA ratio in both red and white portions of the gastrocnemius. Cytochrome c and cytochrome- c oxidase complex subunit IV (Cox IV) protein were reduced in all three muscles with severe cachexia. Changes in muscle oxidative capacity were not associated with altered myosin heavy chain expression. PGC-1α expression was suppressed by cachexia in the red and white gastrocnemius and soleus muscles. Cachexia reduced Mfn1 and Mfn2 mRNA expression and markers of oxidative stress, while Fis1 mRNA was increased by cachexia in all muscle types. Muscle oxidative capacity, mitochondria dynamics, and markers of oxidative stress are reduced in both oxidative and glycolytic muscle with severe wasting that is associated with increased circulating IL-6 levels.


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 702 ◽  
Author(s):  
Piergiorgio La Rosa ◽  
Sara Petrillo ◽  
Enrico Silvio Bertini ◽  
Fiorella Piemonte

DNA repeat expansion disorders are a group of neuromuscular and neurodegenerative diseases that arise from the inheritance of long tracts of nucleotide repetitions, located in the regulatory region, introns, or inside the coding sequence of a gene. Although loss of protein expression and/or the gain of function of its transcribed mRNA or translated product represent the major pathogenic effect of these pathologies, mitochondrial dysfunction and imbalance in redox homeostasis are reported as common features in these disorders, deeply affecting their severity and progression. In this review, we examine the role that the redox imbalance plays in the pathological mechanisms of DNA expansion disorders and the recent advances on antioxidant treatments, particularly focusing on the expression and the activity of the transcription factor NRF2, the main cellular regulator of the antioxidant response.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1146
Author(s):  
Laura A. Huff ◽  
Shan Yan ◽  
Mark G. Clemens

Cells have evolved extensive signaling mechanisms to maintain redox homeostasis. While basal levels of oxidants are critical for normal signaling, a tipping point is reached when the level of oxidant species exceed cellular antioxidant capabilities. Myriad pathological conditions are characterized by elevated oxidative stress, which can cause alterations in cellular operations and damage to cellular components including nucleic acids. Maintenance of nuclear chromatin are critically important for host survival and eukaryotic organisms possess an elaborately orchestrated response to initiate repair of such DNA damage. Recent evidence indicates links between the cellular antioxidant response, the DNA damage response (DDR), and the epigenetic status of the cell under conditions of elevated oxidative stress. In this emerging model, the cellular response to excessive oxidants may include redox sensors that regulate both the DDR and an orchestrated change to the epigenome in a tightly controlled program that both protects and regulates the nuclear genome. Herein we use sepsis as a model of an inflammatory pathophysiological condition that results in elevated oxidative stress, upregulation of the DDR, and epigenetic reprogramming of hematopoietic stem cells (HSCs) to discuss new evidence for interplay between the antioxidant response, the DNA damage response, and epigenetic status.


2021 ◽  
Vol 12 ◽  
Author(s):  
Camille Audousset ◽  
Toby McGovern ◽  
James G. Martin

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a major transcription factor involved in redox homeostasis and in the response induced by oxidative injury. Nrf2 is present in an inactive state in the cytoplasm of cells. Its activation by internal or external stimuli, such as infections or pollution, leads to the transcription of more than 500 elements through its binding to the antioxidant response element. The lungs are particularly susceptible to factors that generate oxidative stress such as infections, allergens and hyperoxia. Nrf2 has a crucial protective role against these ROS. Oxidative stress and subsequent activation of Nrf2 have been demonstrated in many human respiratory diseases affecting the airways, including asthma and chronic obstructive pulmonary disease (COPD), or the pulmonary parenchyma such as acute respiratory distress syndrome (ARDS) and pulmonary fibrosis. Several compounds, both naturally occurring and synthetic, have been identified as Nrf2 inducers and enhance the activation of Nrf2 and expression of Nrf2-dependent genes. These inducers have proven particularly effective at reducing the severity of the oxidative stress-driven lung injury in various animal models. In humans, these compounds offer promise as potential therapeutic strategies for the management of respiratory pathologies associated with oxidative stress but there is thus far little evidence of efficacy through human trials. The purpose of this review is to summarize the involvement of Nrf2 and its inducers in ARDS, COPD, asthma and lung fibrosis in both human and in experimental models.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Gobinath Shanmugam ◽  
Madhusudhanan Narasimhan ◽  
Robbie Conley ◽  
Rajesh Kumar Radhakrishnan ◽  
Silvio H Litovsky ◽  
...  

Background: Nuclear erythroid-2 like factor-2 (Nrf2), a master transcriptional regulator of antioxidants, is critical to maintain cellular redox homeostasis. We recently reported that exercise training activates Nrf2/antioxidant signaling in the heart. Isoproterenol (ISO) mediated structural, and functional changes in the heart involve oxidative stress. Here, we tested a hypothesis that moderate exercise training will protect the myocardium from isoproterenol-induced injury by augmenting Nrf2-dependent antioxidant defense system. Methods: Age- and sex-matched WT (C57/BL6) mice (6-8 months old) were subjected to moderate exercise training (MET) on a treadmill for 6 weeks (60 min/day; 10m/min; 0% grade). Randomly assigned untrained (UNT) and trained (MET) animals were intraperitoneally injected (at the start of 6 th week) with 50 mg of isoproterenol/kg.bw./day for 7 consecutive days. MET was continued during ISO administration and the animals (UNT + PBS, UNT + ISO; MET + ISO) underwent echocardiography analysis. Heart tissues were collected for histopathology, Nrf2-ARE promoter binding assay (Active-motif TransAM kit), antioxidant gene (qPCR) and protein (Immunoblotting) levels, and glutathione redox status. Results: ISO administration significantly reduced the Nrf2 promoter activity (p<0.05) and downregulated the expression of cardiac antioxidant genes ( Gclc, Nqo1, Cat, Gsr and Gst-μ ) in UNT mice. Further, increased oxidative stress with severe myocardial injury was evident in UNT+ISO when compared to UNT mice receiving PBS under basal condition. Interestingly, MET stabilized the Nrf2-promoter activity and promoted the expression of Nrf2-dependent antioxidant genes and proteins animals receiving ISO, and thereby attenuated the oxidative stress-induced myocardial damage. Echocardiography analysis showed impaired systolic/diastolic ventricular volumes coupled with decreased cardiac output in UNT+ISO mice, but this was normalized in exercise-trained animals. Conclusion: Thus moderate exercise training conferred protection against ISO-induced myocardial injury by augmentation of Nrf2-antioxidant signaling and attenuation of redox perturbations.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Reiko Nakao ◽  
Tomoki Abe ◽  
Saori Yamamoto ◽  
Katsutaka Oishi

AbstractKetogenic diets (KD) that are very high in fat and low in carbohydrates are thought to simulate the metabolic effects of starvation. We fed mice with a KD for seven days to assess the underlying mechanisms of muscle wasting induced by chronic starvation. This diet decreased the weight of the gastrocnemius (Ga), tibialis anterior (TA) and soleus (Sol) muscles by 23%, 11% and 16%, respectively. The size of Ga, TA, Sol muscle fibers and the grip strength of four limbs also significantly declined by 20%, 28%, 16% and 22%, respectively. The muscle atrophy-related genes Mafbx, Murf1, Foxo3, Lc3b and Klf15 were upregulated in the skeletal muscles of mice fed with the KD. In accordance with the reduced expression of anabolic genes such as Igf1, surface sensing of translation (SUnSET) analyses of fast-twitch Ga, TA and Sol muscles revealed that the KD suppressed muscle protein synthesis. The mRNA expression of oxidative stress-responsive genes such as Sod1 was significantly increased in all muscles examined. In addition to hypercorticosteronemia, hypoinsulinemia and reduced IGF-1, oxidative stress might also be involved in KD-induced muscle atrophy. Feeding mice with a KD is a novel experimental animal model of muscle-wasting induced by chronic starvation.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Alexandra Gaál Kovalčíková ◽  
Ľubica Tichá ◽  
Katarína Šebeková ◽  
Peter Celec ◽  
Alžbeta Čagalová ◽  
...  

Abstract Background Anorexia nervosa (AN) is a serious psychosomatic disorder with unclear pathomechanisms. Metabolic dysregulation is associated with disruption of redox homeostasis that might play a pivotal role in the development of AN. The aim of our study was to assess oxidative status and carbonyl stress in plasma, urine and saliva of patients with AN and healthy controls. Methods Plasma, spot urine, and saliva were collected from 111 girls with AN (aged from 10 to 18 years) and from 29 age-matched controls. Markers of oxidative stress and antioxidant status were measured using spectrophotometric and fluorometric methods. Results Plasma advanced oxidation protein products (AOPP) and advanced glycation end products (AGEs) were significantly higher in patients with AN than in healthy controls (by 96, and 82%, respectively). Accordingly, urinary concentrations of AOPP and fructosamines and salivary concentrations of AGEs were higher in girls with AN compared with controls (by 250, and 41% in urine; by 92% in saliva, respectively). Concentrations of thiobarbituric acid reactive substances (TBARS) in saliva were 3-times higher in the patients with AN than in the controls. Overall antioxidants were lower in plasma of girls with AN compared to the controls, as shown by total antioxidant capacity and ratio of reduced and oxidized glutathione (by 43, and 31%, respectively). Conclusions This is the first study assessing wide range of markers of oxidative status in plasma, urine and saliva of the patients with AN. We showed that both, higher levels of markers of oxidative stress and lower antioxidants play a role in redox disruption. Restoration of redox homeostasis might be of the clinical relevance


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 986
Author(s):  
Nada S. Aboelella ◽  
Caitlin Brandle ◽  
Timothy Kim ◽  
Zhi-Chun Ding ◽  
Gang Zhou

It has been well-established that cancer cells are under constant oxidative stress, as reflected by elevated basal level of reactive oxygen species (ROS), due to increased metabolism driven by aberrant cell growth. Cancer cells can adapt to maintain redox homeostasis through a variety of mechanisms. The prevalent perception about ROS is that they are one of the key drivers promoting tumor initiation, progression, metastasis, and drug resistance. Based on this notion, numerous antioxidants that aim to mitigate tumor oxidative stress have been tested for cancer prevention or treatment, although the effectiveness of this strategy has yet to be established. In recent years, it has been increasingly appreciated that ROS have a complex, multifaceted role in the tumor microenvironment (TME), and that tumor redox can be targeted to amplify oxidative stress inside the tumor to cause tumor destruction. Accumulating evidence indicates that cancer immunotherapies can alter tumor redox to intensify tumor oxidative stress, resulting in ROS-dependent tumor rejection. Herein we review the recent progresses regarding the impact of ROS on cancer cells and various immune cells in the TME, and discuss the emerging ROS-modulating strategies that can be used in combination with cancer immunotherapies to achieve enhanced antitumor effects.


Sign in / Sign up

Export Citation Format

Share Document