scholarly journals Degree of Biomass Conversion in the Integrated Production of Bioethanol and Biogas

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7763
Author(s):  
Krzysztof Pilarski ◽  
Agnieszka A. Pilarska ◽  
Piotr Boniecki ◽  
Gniewko Niedbała ◽  
Kamil Witaszek ◽  
...  

The integrated production of bioethanol and biogas makes it possible to optimise the production of carriers from renewable raw materials. The installation analysed in this experimental paper was a hybrid system, in which waste from the production of bioethanol was used in a biogas plant with a capacity of 1 MWe. The main objective of this study was to determine the energy potential of biomass used for the production of bioethanol and biogas. Based on the results obtained, the conversion rate of the biomass—maize, in this case—into bioethanol was determined as the efficiency of the process of bioethanol production. A biomass conversion study was conducted for 12 months, during which both maize grains and stillage were sampled once per quarter (QU-I, QU-II, QU-III, QU-IV; QU—quarter) for testing. Between 342 L (QU-II) and 370 L (QU-I) of ethanol was obtained from the organic matter subjected to alcoholic fermentation. The mass that did not undergo conversion to bioethanol ranged from 269.04 kg to 309.50 kg, which represented 32.07% to 36.95% of the organic matter that was subjected to the process of bioethanol production. On that basis, it was concluded that only two-thirds of the organic matter was converted into bioethanol. The remaining part—post-production waste in the form of stillage—became a valuable raw material for the production of biogas, containing one-third of the biodegradable fraction. Under laboratory conditions, between 30.5 m3 (QU-I) and 35.6 m3 (QU-II) of biogas per 1 Mg of FM (FM—fresh matter) was obtained, while under operating conditions, between 29.2 m3 (QU-I) and 33.2 m3 (QU-II) of biogas was acquired from 1 Mg of FM. The Biochemical Methane Potential Correction Coefficient (BMPCC), which was calculated based on the authors’ formula, ranged from 3.2% to 7.4% in the analysed biogas installation.

Author(s):  
Sri Wilarso Budi ◽  
Andi Sukendro ◽  
Lina Karlinasari

The objectve of this research was to obtain the best materials composition and adhesive of organic pot for forest trees seedling production. Organic pot strength was evaluated by testing the strength of rupture elasticity and elasticity stiffness of each composition. The bioassay testing used Completely Randomized Design with factorial pattern, consisting of two factors, (1) basic raw materials of the pot (used newspaper, litter and compost) and (2) the type of adhesive (control, tanin and starch). The results showed that the adhesive starch gave higher strength, whereas adhesive tannin gave higher stiffness as compared to control. Results of bioassay showed that the mixture (50:50 v/v) of basic materials of used newspaper and compost (KKK) which were glued with tannin, produced the best results for height and diameter increament with the value of 35.85 cm, 0.31 cm respectively and biomass value of 0.99 g after 12 weeks of planting. The highest level of damage in organic pot with basic raw materials KKK without adhesive was 47.6%, whereas lowest level of damage in organic pot with basic raw material used newspaper (KK) with tannin addhesive was 2.0% after 12 weeks in the nursery.Keywords: adhesive, Gmelina arborea,organic pot, organic matter, nursery,


Jurnal Dampak ◽  
2013 ◽  
Vol 10 (1) ◽  
pp. 46 ◽  
Author(s):  
Elvie Yennie ◽  
Shinta Elystia

ABSTRAKPestisida adalah substansi kimia dan bahan lain yang digunakan untuk mengendalikan berbagai hama yang terbukti mengganggu. Pestisida dapat dibuat dari bahan alam yang salah satunya dari daun pepaya dan umbi bawang putih. Hal ini diiringi dengan mudahnya didapatkan bahan alam tersebut sehingga muncullah ide untuk membuat pestisida dari bahan tersebut. Tujuan dari penelitian ini adalah mempelajari pengaruh variasi waktu perendaman bahan baku dengan variasi pelarut, menghitung rendemen dari variasi waktu perendaman bahan baku dan menguji senyawa metabolit sekunder dari rendemen maksimum lalu menguji toksisitas ekstrak yang diperoleh terhadap larva nyamuk. Penelitian ini dilakukan dengan metode ekstraksi maserasi menggunakan pelarut metanol dan etanol. Variasi waktu perendaman 3,5,7 hari dengan suhu lingkungan, nisbah larutan padatan sebesar 1 : 4, setelah proses perendaman dilakukan penyaringan dan hasil saringan berupa filtrat didestilasi dengan kondisi operasi temperatur 80o C selama 50 menit. Lalu ekstrak diuji senyawa metabolit sekundernya, diukur pHnya dan toksisitas terhadap hewan uji. Kondisi operasi maksimum diperoleh pada waktu perendaman selama 7 hari dengan kadar rendemen sebesar 41,35 % dengan pH 5,79 untuk hasil ekstrak metanol dan 36,06 % dengan pH 5,86 untuk hasil ekstrak etanol. Metabolit sekunder yang berhasil diidentifikasi adalah alkaloid, flavonoid, saponin, tanin dan sulfur. Konsentrasi maksimum yang membunuh larva nyamuk adalah sebesar 3000 ppm dengan rata-rata kematian larva 95 % untuk ekstrak etanol dan 97,5 % untuk ekstrak metanol.Kata kunci: pestisida alami, daun pepaya dan umbi bawang putih, ekstraksiABSTRACTPesticides are chemicals and other substances used to control pests that could prove disruptive. Pesticides can be made from natural materials, one of which from the leaves of papaya and garlic bulbs. It is accompanied by easily obtained natural materials that came the idea to create pesticide of these materials. The purpose of this research was to study the effect of variations in the time of immersion of raw materials with a variety of solvents, calculate the yield of raw material variation of soaking time and the test compounds secondary metabolites of maximum yield and test the toxicity of exstracts obtained against mosquito larvae. The research was done by maceration extraction method using methanol and ethanol. 3,5,7 days soaking time variation with temperature, the solid solution ratio 1 : 4, after immersion do filtering was done and filter the results in the form of the filtrate is distilled at 80o C temperature operating conditions for 50 minutes. Then extract secondary metabolites were tested, measured their pH and toxicity towards the test animals. Maximum operating conditions obtained at the time of immersion for 7 days with high levels of yields at 41.35 % with a pH of 5.79 for methanol extract and 36.06 % with a pH 5.86 to extract the ethanol. Secondary metabolites that were succesfuly identified are alkaloids, flavonoids, saponins, tannins, and sulfur.Maximum concentration that killed mosquito larvae is equal to 3000 ppm with an average of 95 % larval mortality for ethanol extract and 97.5 % for methanol extract.Keyword : natural pesticides, papaya and garlic bulbs, extraction


Author(s):  
S.D. Viktorov ◽  
◽  
A.E. Frantov ◽  
I.N. Lapikov ◽  
◽  
...  

The most accessible and popular means of destruction of rocks, which are used in the extraction of ores, non-metallic minerals, mining and chemical raw materials, are the cheap explosives, in the Russian technical literature called granulites or AS-DT, in the foreign — ANFO. The article presents the research carried out to improve the formulation and explosive properties of granulites A6, Igdanit, Igdanit-P, A3. They are aimed at using the modern raw material base, increasing the efficiency of blasting, the safety of manufacturing and loading drill holes and boreholes, maintaining a balanced composition, and preserving physical stability, providing energy potential with secondary aluminum additives. Further development of granulites is aimed at creating a line of formulations using saltpeter with variable technical parameters, mixed fuels in the form of liquid (waste oil products, fuel mixtures, diesel fuel) and solid (coal powder, coke fines, rubber crumbs) phases. Based on the use of the cheap explosives in the formulation of recycling materials formed at the mining enterprises, blasting technologies are being improved, and mixing and charging equipment is being developed. The proposed approaches are aimed at maintaining high technical and economic indicators of the use of explosives, ensuring the stationarity of the explosive process and the completeness of detonation of granulites reducing the sensitivity to mechanical and thermal influences, and maintaining susceptibility to initiation by practical means of an explosive pulse. When compiling the new formulations of granulites to reduce production costs, it is proposed to use the most economical types of oxidants and fuels with ensuring quality control of mixing components with different technological properties and conditioning the temperature-viscosity properties of the waste oil products.


2020 ◽  
pp. 27-34
Author(s):  
D. G. Chistyakov ◽  
◽  
V. O. Golubev ◽  
V. M. Sizyakov ◽  
V. N. Brichkin ◽  
...  

It is well known that an unstable composition of ore and auxiliary materials creates the need to manage material flows and their composition in order to ensure the required productivity and achieve the desired qualitative and quantitative characteristics of the final products. The above problem was decided to find a solution for through analysis and mathematical processing of the RUSAL Achinsk database containing data on the incoming nepheline ore and limestone. Thus, one could analyze variations in the ore composition and carry out a statistical analysis by calculating the root-mean-square (standard) deviation and the variation coefficient. A digital model of the alumina and soda product production process employed by RUSAL Achinsk was used as the main tool for calculating production indicators as a function of the raw material composition. The model was built by RUSAL ETC on the basis of lumped parameters modelling. It is shown that the chemical composition of the raw materials supplied to RUSAL Achinsk and their variability in the current operating conditions of the Kiya-Shaltyr nepheline mine and Mazoul limestone mine have a significant impact on the alumina and by-product production process and some adjustment of the process flows is required. It was estimated how the output and the consumption of soda-sulfate mixture and potash are likely to change depending on the concentration of Al2O3, K2O, Na2O and SO3 in the feed material. Based on the obtained results, one can identify the most innovative process solutions that would enable to raise the output of by-products while maintaining the output of alumina due to the introduction of appropriate corrective ingredients. In this case, the output of potassium sulfate is expected to rise from 1.22 to 5.78%, and that of soda ash — from 1.27 to 6.5%, which determines a significant increase in profit for these two products. This research study was funded by the Russian Science Foundation under the Grant Agreement No. 18-19-00577 dated 26th April 2018 on fundamental scien tific research and exploratory scientific research.


Cerâmica ◽  
2001 ◽  
Vol 47 (304) ◽  
pp. 204-207 ◽  
Author(s):  
S. R. Teixeira ◽  
S. A. de Souza ◽  
C. A. I. Moura

Plasticity and the grain-size distribution of the raw material used to make structural bricks and roof tiles are very important to the production process. These two parameters and the mineral composition will define the quality and properties of the final product: color, mechanical resistance, water absorption, cracks, swell and shrink during drying and firing the ceramic pieces etc. In the Brazilian ceramic industry it is very common to mix together two or more different kinds of raw material to achieve the ceramic mass with the desired grain-size distribution. The objective of this work was to characterize the raw material collected at the floodplains of the Paraná and Paranapanema Rivers and the ceramic mass used by the ceramic industry in western São Paulo State, Brazil. Particle size distribution, organic matter and X-ray diffraction were used to study this material. The textural analysis indicates that the raw materials have the clay fraction ranging from 38.2% to 66.3%, the silt from 22.2% to 49.7% and the sand from 3.1% to 34.1%. The results indicate that all mixed raw materials have more clay in its composition than would be necessary. The organic matter ranges from 5 to 7%. All samples have kaolinite and many of them have smectites, HIV and mica. Gibbsite, iron and titanium oxides, and quartz are also identified. One of the samples (yellow) is rich in goethite.


2020 ◽  
Vol 12 (4) ◽  
pp. 1368 ◽  
Author(s):  
Zhijuan Zhang ◽  
Marcin Lis

Industrial development of the economic system of any state is directly related to the use of energy potential. China’s industrial breakthrough is no exception. Today, China is one of the largest importers–consumers of oil, whose economy is extremely dependent on the energy market. The growing production and population, as well as climatic changes that directly determine the well-being of society, have become the causal basis for the development of alternative ways of generating energy. The aim of the study is to model the implementation of the sustainable development strategy in China through the production and use of biofuels. The simulation is made taking into account the following. The production capacities of Chinese licensed producers of fuel ethanol are calculated. The efficiency of bioethanol production from various types of biological raw materials is evaluated. An economic and mathematical model of bioethanol production is built. The article forecasts the profitability of bioethanol sales from various types of biological raw materials (sugar sorghum, corn) in Chinese and European markets. The study comprehensively reveals the features of the use of biofuels in an industrial country, taking into account geopolitical factors, social and market contexts, as well as technical analysis of the raw materials and production potential of Chinese companies. The article also interprets the economic processes associated with the introduction of biofuels in the ecological and economic systems of China. The article demonstrates other concepts regarding the consequences of the energy sector’s transition to the principles of energy production from biomass. The article shows the contradictory nature of the impact of biofuel production on the food market and the agricultural sector. The article analyzes possible social, resource and macroeconomic risks, and also indicates possible vectors for further research that might be aimed at diversifying the associated negative processes.


2017 ◽  
Vol 6 (3) ◽  
pp. 216-222
Author(s):  
Irina Victorovna Shevnina ◽  
Tatyana Nikolaevna Loshakova

The research is devoted to the studies of raw materials and molding masses of ceramic products from the settlement Toksanbay. The purpose of the research was to study the technological aspects taking place in the course of ceramic vessels production, as well as in-depth study of the raw materials and molding masses of pottery ceramics of the settlement. During the research of samples, in addition to petrographic analysis, fragments of ceramics were studied using the binocular microscopy method, chemical experiments were carried out (using a micromethod) with the use of ammonium molybdenum, hydrochloric acid, and microenacts were checked for iron in the composition of the crock. The received result revealed that as the raw material ferruginous clay was used, and the chemical reaction to Fe of all fragments turned out to be positive. The original clay contains sand, besides this, sand feldspars, fragments of sandstones, silicified schists and epidote are noted in the sand composition. Three recipes of molding masses were revealed. The organics is stated in the form of silicified voids. The composition of organic matter showed carbonate-siliceous or carbonate-phosphate. The microreaction analysis using ammonium molybdenum (МоН4)2АmО4 determined the presence of a phosphate type in organic samples. From the organic fillers, a part of the studied samples revealed hollows of round and oval shape from the burnt organics. The study of the pottery of the settlement will be continued but it can be argued that the Toksanbay potters used local clay, and the most common impurity was organogenic limestone.


2018 ◽  
Vol 40 (4) ◽  
pp. 50-57
Author(s):  
А.A. Dolinskyi ◽  
O. M. Obodovych ◽  
V.V. Sydorenko

The paper presents an overview of bioetanol production technologies. It is noted that world fuel ethanol production in 2017 amounted to more than 27,000 million gallons (80 million tons). Eight countries, namely the USA, Brazil, the EU, China, Canada, Thailand, Argentina, India, together produce about 98% of bioethanol. In Ukraine, the volume of bioethanol production by alcoholic factories in recent years has been gradually increasing and amounted to 2,992.8 ths. dal in 2017. The production of ethanol as an additive to gasoline, with regard to the raw materials used, as well as the corresponding technologies, is historically divided into three generations. The first generation of biofuels produced from food crops rich in sugar or starch is currently dominant. Production of advanced biofuels from non-food crop feedstocks is limited. Output is anticipated to remain modest in the short term, as progress is needed to improve technology readiness. The main stages of bioethanol production from lignocellulosic raw materials are pre-treatment, enzymatic hydrolysis and fermentation. The pre-treatment process aims to reduce of sizes of raw material particles, provision of the components exposure (hemicellulose, cellulose, starch), provision of better access for the enzymes (in fermentative hydrolysis) to the surface of raw materials, and reduction of crystallinity degree of the cellulose matrix. The pre-treatment process is a major cost component of the overall process. The pre-treatment process is highly recommended as it gives subsequent or direct yield of the fermentable sugars, prevents premature degradation of the yielded sugars, prevents inhibitors formation prior hydrolysis and fermentation, lowers the processing cost, and lowers the demand of conventional energy in general. From the perspective of efficiency, promising methods of pre-treatment of lignocellulosic raw materials to hydrolysis are combined methods combining mechanical, chemical and physical mechanisms of influence on raw materials. One method that combines several physical effects on a treated substance is the discrete-pulsed energy input (DPIE) method. The DPIE method can be applied in the pre- treatment of lignocellulosic raw material in the technology bioethanol production for intensifying the process and reducing energy consumption. Ref. 15, Fig. 2.


Genetika ◽  
2015 ◽  
Vol 47 (1) ◽  
pp. 171-184 ◽  
Author(s):  
Valentina Semencenko ◽  
Milica Radosavljevic ◽  
Ljiljana Mojovic ◽  
Dusanka Terzic ◽  
Marija Milasinovic-Seremesic ◽  
...  

Maize (Zea mays L.) is one of the most important cereal crops, and as such, one of the most significant naturally renewable carbohydrate raw materials for the production of energy and multitude of different products. Many studies have shown that the kernel composition and starch structure of maize are highly influenced by genetic background of the maize. Maize grain consists of approximately 70% of starch, which makes it a very suitable feedstock for the bioethanol production. This study was conducted with aim to understand how different genetic background affects bioethanol yield and other fermentation properties of the selected maize genotypes in the process of maize grain- based bioethanol production. Twenty seven maize hybrids, including genotypes of standard chemical composition as well as specialty maize hybrids such as popping, waxy, white kernel and red kernel hybrids, developed at the Maize Research Institute, Zemun Polje, were investigated in this study. The lowest bioethanol yield of 7.25% w/w obtained for hybrid ZP 611k after 48 h of fermentation and the highest by genotype ZP 434 (8.96% w/w). A very significant positive correlation was determined between kernel starch content and the bioethanol yield after 48h of fermentation, as well as volumetric productivity (48h) (r=0.67). Between bioethanol yield after 48h of fermentation and soft endosperm content in kernel of the investigated ZP maize hybrids a very significant positive correlation was assessed (r=0.66). Higher overall bioethanol yields have been obtained from genotypes containing higher starch and lower protein and lipid contents.


2016 ◽  
pp. 205-208 ◽  
Author(s):  
Burcu Akalin ◽  
Anil M. Seyrekbasan

Strategic importance of oil and gas supplies has increased in recent years. To diversify energy sources and to engage local resources for energy supply in countries with high external dependency has become very important. In the study, the raw material for bioethanol is evaluated in terms of compliance with the conditions of Turkey. Possible mandatory blending rates of bioethanol are assessed in terms of Turkish domestic agricultural production capacity. A comparative analysis on the best raw material cultivated in Turkey as source for bioethanol production is made.


Sign in / Sign up

Export Citation Format

Share Document