scholarly journals Contamination of Hospital Surfaces with Bacterial Pathogens under the Current COVID-19 Outbreak

Author(s):  
Andrei A. Pochtovyi ◽  
Daria V. Vasina ◽  
Daria D. Kustova ◽  
Elizaveta V. Divisenko ◽  
Nadezhda A. Kuznetsova ◽  
...  

The SARS-CoV-2 pandemic remains a global health issue for several reasons, such as the low vaccination rates and a lack of developed herd immunity to the evolution of SARS-CoV-2, as well as its potential inclination to elude neutralizing antibodies. It should be noted that the severity of the COVID-19 disease is significantly affected by the presence of co-infections. Comorbid conditions are caused not only by pathogenic and opportunistic microorganisms but also by some representatives of the environmental microbiome. The presence of patients with moderate and severe forms of the disease in hospitals indicates the need for epidemiological monitoring of (1) bacterial pathogens circulating in hospitals, especially the ESKAPE group pathogens, and (2) the microbiome of various surfaces in hospitals. In our study, we used combined methods based on PCR and NGS sequencing, which are widely used for epidemiological monitoring. Through this approach, we identified the DNA of pathogenic bacteria (Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, CoNS, and Achromobacter spp.) on various surfaces. We also estimated the microbiome diversity of surfaces and identified the potential reservoirs of infections using 16S rRNA profiling. Although we did not assess the viability of identified microorganisms, our results indicate the possible risks of insufficient regular disinfection of surfaces, regardless of department, at the Infectious Diseases Hospital. Controlling the transmission of nosocomial diseases is critical to the successful treatment of COVID-19 patients, the rational use of antimicrobial drugs, and timely decontamination measures.

2012 ◽  
Vol 56 (11) ◽  
pp. 5433-5441 ◽  
Author(s):  
Miles C. Duncan ◽  
Roger G. Linington ◽  
Victoria Auerbuch

ABSTRACTThe recent and dramatic rise of antibiotic resistance among bacterial pathogens underlies the fear that standard treatments for infectious disease will soon be largely ineffective. Resistance has evolved against nearly every clinically used antibiotic, and in the near future, we may be hard-pressed to treat bacterial infections previously conquered by “magic bullet” drugs. While traditional antibiotics kill or slow bacterial growth, an important emerging strategy to combat pathogens seeks to block the ability of bacteria to harm the host by inhibiting bacterial virulence factors. One such virulence factor, the type three secretion system (T3SS), is found in over two dozen Gram-negative pathogens and functions by injecting effector proteins directly into the cytosol of host cells. Without T3SSs, many pathogenic bacteria are unable to cause disease, making the T3SS an attractive target for novel antimicrobial drugs. Interdisciplinary efforts between chemists and microbiologists have yielded several T3SS inhibitors, including the relatively well-studied salicylidene acylhydrazides. This review highlights the discovery and characterization of T3SS inhibitors in the primary literature over the past 10 years and discusses the future of these drugs as both research tools and a new class of therapeutic agents.


Author(s):  
Nilushi Indika Bamunuarachchi ◽  
Fazlurrahman Khan ◽  
Young-Mog Kim

Background: With the growing incidence of microbial pathogenesis, several alternative strategies have been developed. The number of treatments using naturally (e.g., plants, algae, fungi, bacteria, and animals) derived compounds has increased. Importantly, marine-derived products have become a promising and effective approach to combat the antibiotic resistance properties developed by bacterial pathogens. Furthermore, augmenting the sub-inhibitory concentration of the naturally-derived antimicrobial compounds (e.g., hydroxycinnamic acids, terpenes, marine-derived polysaccharides, phenolic compounds) into the naturally derived extracts as a combination therapy to treat the bacterial infection has not been well studied. Objective: The present study was aimed to prepare green algae Ulva lactuca extract and evaluate its antibacterial activity towards Gram-positive and Gram-negative human pathogenic bacteria. Also, revitalize the antibacterial efficiency of the naturally-derived antimicrobial drugs and conventional antibiotics by augmenting their sub-MIC to the U. lactuca extracts. Methods: Extraction was done using a different organic solvent, and its antibacterial activity was tested towards Gram-positive and Gram-negative pathogens. The minimum inhibitory concentration (MIC) of U. lactuca extracts has been determined towards pathogenic bacteria using the micro broth dilution method. The viable cell counting method was used to determine the minimum bactericidal concentration (MBC). The fractional inhibitory concentration (FIC) assay was utilized to examine the combinatorial impact of sub-MIC of two antibacterial drugs using the micro broth dilution method. The chemical components of the extract were analyzed by GC-MS analysis. Results: Among all the extracts, n-hexane extract was found to show effective antibacterial activity towards tested pathogens with the lowest MIC and MBC value. Furthermore, the n-hexane extracts have also been used to enhance the efficacy of the naturally-derived (derived from plants and marine organisms) compounds and conventional antibiotics at their sub-inhibitory concentrations. Most of the tested antibiotics and natural drugs at their sub-MIC were found to exhibit synergistic and additive antibacterial activity towards the tested bacterial pathogens. Conclusions: The augmenting of U. lactuca n-hexane extracts resulted in synergistic and additive bactericidal effects on Gram-positive and Gram-negative human pathogenic bacteria. The present study shows a new alternative strategy to revitalize the antimicrobial activity of naturally derived compounds for treating human bacterial pathogens.


2020 ◽  
Author(s):  
Laura Lafon-Hughes

BACKGROUND It is common knowledge that vaccination has improved our life quality and expectancy since it succeeded in achieving almost eradication of several diseases including chickenpox (varicella), diphtheria, hepatitis A and B, measles, meningococcal, mumps, pneumococcal, polio, rotavirus, rubella, tetanus and whooping cough (pertussis) Vaccination success is based on vaccine induction of neutralizing antibodies that help fight the infection (e.g. by a virus), preventing the disease. Conversely, Antibody-dependent enhancement (ADE) of a viral infection occurs when anti-viral antibodies facilitate viral entry into host cells and enhance viral infection in these cells. ADE has been previously studied in Dengue and HIV viruses and explains why a second infection with Dengue can be lethal. As already reviewed in Part I and Part II, SARS-Cov-2 shares with HIV not only 4 sequences in the Spike protein but also the capacity to attack the immune system. OBJECTIVE As HIV presents ADE, we wondered whether this was also the case regarding SARS-CoV-2. METHODS A literature review was done through Google. RESULTS SARS-CoV-2 presents ADE. As SARS, which does not have the 4 HIV-like inserts, has the same property, ADE would not be driven by the HIV-like spike sequences. CONCLUSIONS ADE can explain the failure of herd immunity-based strategies and will also probably hamper anti-SARS-CoV-2 vaccine development. As reviewed in Part I, there fortunately are promising therapeutic strategies for COVID-19, which should be further developed. In the meantime, complementary countermeasures to protect mainly the youth from this infection are presented to be discussed in Part V Viewpoint.


Author(s):  
Yi-Tui Chen

Although vaccination is carried out worldwide, the vaccination rate varies greatly. As of 24 May 2021, in some countries, the proportion of the population fully vaccinated against COVID-19 has exceeded 50%, but in many countries, this proportion is still very low, less than 1%. This article aims to explore the impact of vaccination on the spread of the COVID-19 pandemic. As the herd immunity of almost all countries in the world has not been reached, several countries were selected as sample cases by employing the following criteria: more than 60 vaccine doses per 100 people and a population of more than one million people. In the end, a total of eight countries/regions were selected, including Israel, the UAE, Chile, the United Kingdom, the United States, Hungary, and Qatar. The results find that vaccination has a major impact on reducing infection rates in all countries. However, the infection rate after vaccination showed two trends. One is an inverted U-shaped trend, and the other is an L-shaped trend. For those countries with an inverted U-shaped trend, the infection rate begins to decline when the vaccination rate reaches 1.46–50.91 doses per 100 people.


2021 ◽  
Vol 9 (4) ◽  
pp. 850
Author(s):  
José Esteban Muñoz-Medina ◽  
Concepción Grajales-Muñiz ◽  
Angel Gustavo Salas-Lais ◽  
Larissa Fernandes-Matano ◽  
Constantino López-Macías ◽  
...  

Until recently, the incidence of COVID-19 was primarily estimated using molecular diagnostic methods. However, the number of cases is vastly underreported using these methods. Seroprevalence studies estimate cumulative infection incidences and allow monitoring of transmission dynamics, and the presence of neutralizing antibodies in the population. In February 2020, the Mexican Social Security Institute began conducting anonymous unrelated sampling of residual sera from specimens across the country, excluding patients with fever within the previous two weeks and/or patients with an acute respiratory infection. Sampling was carried out weekly and began 17 days before Mexico’s first officially confirmed case. The 24,273 sera obtained were analyzed by chemiluminescent-linked immunosorbent assay (CLIA) IgG S1/S2 and, later, positive cases using this technique were also analyzed to determine the rate of neutralization using the enzyme-linked immunosorbent assay (ELISA). We identified 40 CLIA IgG positive cases before the first official report of SARS-CoV-2 infection in Mexico. The national seroprevalence was 3.5% in February and 33.5% in December. Neutralizing activity among IgG positives patients during overall study period was 86.1%. The extent of the SARS-CoV-2 infection in Mexico is 21 times higher than that reported by molecular techniques. Although the general population is still far from achieving herd immunity, epidemiological indicators should be re-estimated based on serological studies of this type.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weiwei Wang ◽  
Yan Gao ◽  
Yanting Tang ◽  
Xiaoting Zhou ◽  
Yuezheng Lai ◽  
...  

AbstractCytochromes bd are ubiquitous amongst prokaryotes including many human-pathogenic bacteria. Such complexes are targets for the development of antimicrobial drugs. However, an understanding of the relationship between the structure and functional mechanisms of these oxidases is incomplete. Here, we have determined the 2.8 Å structure of Mycobacterium smegmatis cytochrome bd by single-particle cryo-electron microscopy. This bd oxidase consists of two subunits CydA and CydB, that adopt a pseudo two-fold symmetrical arrangement. The structural topology of its Q-loop domain, whose function is to bind the substrate, quinol, is significantly different compared to the C-terminal region reported for cytochromes bd from Geobacillus thermodenitrificans (G. th) and Escherichia coli (E. coli). In addition, we have identified two potential oxygen access channels in the structure and shown that similar tunnels also exist in G. th and E. coli cytochromes bd. This study provides insights to develop a framework for the rational design of antituberculosis compounds that block the oxygen access channels of this oxidase.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1242
Author(s):  
Sreejita Ghosh ◽  
Dibyajit Lahiri ◽  
Moupriya Nag ◽  
Ankita Dey ◽  
Tanmay Sarkar ◽  
...  

Bacteria are considered as the major cell factories, which can effectively convert nitrogen and carbon sources to a wide variety of extracellular and intracellular biopolymers like polyamides, polysaccharides, polyphosphates, polyesters, proteinaceous compounds, and extracellular DNA. Bacterial biopolymers find applications in pathogenicity, and their diverse materialistic and chemical properties make them suitable to be used in medicinal industries. When these biopolymer compounds are obtained from pathogenic bacteria, they serve as important virulence factors, but when they are produced by non-pathogenic bacteria, they act as food components or biomaterials. There have been interdisciplinary studies going on to focus on the molecular mechanism of synthesis of bacterial biopolymers and identification of new targets for antimicrobial drugs, utilizing synthetic biology for designing and production of innovative biomaterials. This review sheds light on the mechanism of synthesis of bacterial biopolymers and its necessary modifications to be used as cell based micro-factories for the production of tailor-made biomaterials for high-end applications and their role in pathogenesis.


2021 ◽  

Klebsiella pneumoniae (K. pneumoniae) is a common pathogenic bacteria that causes numerous infectious diseases. Hypervirulent K. pneumoniae (hvKP) can lead to invasive K. pneumoniae liver abscess syndrome, which can induce life-threatening multiple organ dysfunction syndrome or septic shock. We report a case of invasive K. pneumoniae liver abscess syndrome caused by hvKP and discuss the treatment options of this syndrome. Appropriate antimicrobial drugs should be administered to improve prognosis and prevent complications, and laboratory testing is essential to guide clinical management and optimize patient outcomes.


Author(s):  
Joseph S. Rom ◽  
Meaghan T. Hart ◽  
Kevin S. McIver

Bacterial pathogens rely on a complex network of regulatory proteins to adapt to hostile and nutrient-limiting host environments. The phosphoenolpyruvate phosphotransferase system (PTS) is a conserved pathway in bacteria that couples transport of sugars with phosphorylation to monitor host carbohydrate availability. A family of structurally homologous PTS-regulatory-domain-containing virulence regulators (PCVRs) has been recognized in divergent bacterial pathogens, including Streptococcus pyogenes Mga and Bacillus anthracis AtxA. These paradigm PCVRs undergo phosphorylation, potentially via the PTS, which impacts their dimerization and their activity. Recent work with predicted PCVRs from Streptococcus pneumoniae (MgaSpn) and Enterococcus faecalis (MafR) suggest they interact with DNA like nucleoid-associating proteins. Yet, Mga binds to promoter sequences as a homo-dimeric transcription factor, suggesting a bi-modal interaction with DNA. High-resolution crystal structures of 3 PCVRs have validated the domain structure, but also raised additional questions such as how ubiquitous are PCVRs, is PTS-mediated histidine phosphorylation via potential PCVRs widespread, do specific sugars signal through PCVRs, and do PCVRs interact with DNA both as transcription factors and nucleoid-associating proteins? Here, we will review known and putative PCVRs based on key domain and functional characteristics and consider their roles as both transcription factors and possibly chromatin-structuring proteins.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kyung Hoon Kim ◽  
MinHo Yang ◽  
Younseong Song ◽  
Chi Hyun Kim ◽  
Young Mee Jung ◽  
...  

AbstractA bacteria-capturing platform is a critical function of accurate, quantitative, and sensitive identification of bacterial pathogens for potential usage in the detection of foodborne diseases. Despite the development of various nanostructures and their surface chemical modification strategies, relative to the principal physical contact propagation of bacterial infections, mechanically robust and nanostructured platforms that are available to capture bacteria remain a significant problem. Here, a three-dimensional (3D) hierarchically structured polyaniline nanoweb film is developed for the efficient capture of bacterial pathogens by hand-touching. This unique nanostructure ensures sufficient mechanical resistance when exposed to compression and shear forces and facilitates the 3D interfacial interactions between bacterial extracellular organelles and polyaniline surfaces. The bacterial pathogens (Escherichia coli O157:H7, Salmonella enteritidis, and Staphylococcus aureus) are efficiently captured through finger-touching, as verified by the polymerase chain reaction (PCR) analysis. Moreover, the real-time PCR results of finger-touched cells on a 3D nanoweb film show a highly sensitive detection of bacteria, which is similar to those of the real-time PCR using cultured cells without the capturing step without any interfering of fluorescence signal and structural deformation during thermal cycling. Graphic Abstract


Sign in / Sign up

Export Citation Format

Share Document