scholarly journals IMPLEMENTATION OF A REDUCED COMPLEXITY HIGH PERFORMANCE DATA ACQUISITION CHIP USING 0.18 MICRON TECHNOLOGY

2021 ◽  
Vol 7 (3) ◽  
pp. 22-26
Author(s):  
Hai P. Le ◽  
◽  
Aladin Azyegh ◽  
Jugdutt Singh ◽  
◽  
...  

Data acquisition (DAQ) in the general sense is the process of collecting information from the real world. For engineers and scientists, this data is mostly numerical and is usually collected, stored and analysed using computers. However, most of the input signals cannot be read directly by digital computers. Because they are generally analog signals distinguished by continuous values, while computers can only recognise digital signals containing only the on/off levels. DAQ systems are therefore inevitably necessary, as they include the translation requirements from analog signals to digital data. For this reason, they have become significant in wide range of applications in modern science and technology [1]. The paper precents the disign of a 12-bit high-speed low-power Data Acquisition (DAQ) Chip. In this paper, the disigns of the building block components are aimed at high-accuracy along with high-speed and low power dissipation. A modifided flash Analog-to-Digital converter (ADC) was used instead of the traditional flash proposed DAQ chip operates at 1 GHz master clock frequency and achieves a sampling speed of 125 MS/s. It dissipates only 64.9 mW of power as compared to 97.2 mW when traditional flash ADC was used.

2017 ◽  
Vol MCSP2017 (01) ◽  
pp. 11-13
Author(s):  
Truptimayee Behera ◽  
Ritisnigdha Das

In our design of CMOS comparator with high performance using GPDK 180nm technology we optimize these parameters. We analyse the transient response of the schematic design and the gain is calculated in AC analysis and also we measure the power dissipation. The circuit is built by using PMOS and NMOS transistor with a body effect. A plot of phase and gain also discussed in the paper. Finally a test schematic is built and transient analysis for an input voltage of 2V is measured using Cadence virtuoso. Simulation results are presented and it shows that this design can work under high speed clock frequency 200MHz. The design has low power dissipation.


Author(s):  
Yogendra Gupta ◽  
Sandeep Saini

Analog to Digital Converter (ADC) is a key functional block in the design of mixed signal, system on chip, and signal processing applications. An optimized method for the direct conversion of analog signal to Gray code representation is presented. This eliminates the need for binary-to-Gray code conversion in many digital modulation techniques like M-PSK and M-QAM, which uses Gray coding representation to represent the symbols that are modulated. The authors design a low-power and high-speed Thermometer to Gray encoder for Flash ADC, as encoders have been widely utilized in high-performance critical applications which persistently impose special design constraints in terms of high-frequency, low power consumption, and minimal area. In this chapter, they propose a new circuit that converts the Thermometer code to Gray code and also yields minimized power.


2014 ◽  
Vol 17 (1) ◽  
pp. 52-61
Author(s):  
Thanh Tri Vo ◽  
Trong Tu Bui ◽  
Duc Hung Le ◽  
Cong Kha Pham

In this paper we present a design of Flash-ADC that can achieve high performance and low power consumption. By using the Double Sampling Rate technique and a new comparator topology with low kick-back noise, this design can achieve high sampling rate while still consuming low power. The design is implemented in a 0.18 m CMOS process. The simulation results show that this design can work at 400 MSps and power consumption is only 16.24 mW. The DNL and INL are 0.15 LSB and 0.6 LSB, respectively.


Author(s):  
Sai Venkatramana Prasada G.S ◽  
G. Seshikala ◽  
S. Niranjana

Background: This paper presents the comparative study of power dissipation, delay and power delay product (PDP) of different full adders and multiplier designs. Methods: Full adder is the fundamental operation for any processors, DSP architectures and VLSI systems. Here ten different full adder structures were analyzed for their best performance using a Mentor Graphics tool with 180nm technology. Results: From the analysis result high performance full adder is extracted for further higher level designs. 8T full adder exhibits high speed, low power delay and low power delay product and hence it is considered to construct four different multiplier designs, such as Array multiplier, Baugh Wooley multiplier, Braun multiplier and Wallace Tree multiplier. These different structures of multipliers were designed using 8T full adder and simulated using Mentor Graphics tool in a constant W/L aspect ratio. Conclusion: From the analysis, it is concluded that Wallace Tree multiplier is the high speed multiplier but dissipates comparatively high power. Baugh Wooley multiplier dissipates less power but exhibits more time delay and low PDP.


Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


2021 ◽  
Vol 11 (1) ◽  
pp. 429
Author(s):  
Min-Su Kim ◽  
Youngoo Yang ◽  
Hyungmo Koo ◽  
Hansik Oh

To improve the performance of analog, RF, and digital integrated circuits, the cutting-edge advanced CMOS technology has been widely utilized. We successfully designed and implemented a high-speed and low-power serial-to-parallel (S2P) converter for 5G applications based on the 28 nm CMOS technology. It can update data easily and quickly using the proposed address allocation method. To verify the performances, an embedded system (NI-FPGA) for fast clock generation on the evaluation board level was also used. The proposed S2P converter circuit shows extremely low power consumption of 28.1 uW at 0.91 V with a core die area of 60 × 60 μm2 and operates successfully over a wide clock frequency range from 5 M to 40 MHz.


2021 ◽  
Vol 11 (10) ◽  
pp. 4610
Author(s):  
Simone Berneschi ◽  
Giancarlo C. Righini ◽  
Stefano Pelli

Glasses, in their different forms and compositions, have special properties that are not found in other materials. The combination of transparency and hardness at room temperature, combined with a suitable mechanical strength and excellent chemical durability, makes this material indispensable for many applications in different technological fields (as, for instance, the optical fibres which constitute the physical carrier for high-speed communication networks as well as the transducer for a wide range of high-performance sensors). For its part, ion-exchange from molten salts is a well-established, low-cost technology capable of modifying the chemical-physical properties of glass. The synergy between ion-exchange and glass has always been a happy marriage, from its ancient historical background for the realisation of wonderful artefacts, to the discovery of novel and fascinating solutions for modern technology (e.g., integrated optics). Getting inspiration from some hot topics related to the application context of this technique, the goal of this critical review is to show how ion-exchange in glass, far from being an obsolete process, can still have an important impact in everyday life, both at a merely commercial level as well as at that of frontier research.


2005 ◽  
Vol 15 (02) ◽  
pp. 459-476
Author(s):  
C. PATRICK YUE ◽  
JAEJIN PARK ◽  
RUIFENG SUN ◽  
L. RICK CARLEY ◽  
FRANK O'MAHONY

This paper presents the low-power circuit techniques suitable for high-speed digital parallel interfaces each operating at over 10 Gbps. One potential application for such high-performance I/Os is the interface between the channel IC and the magnetic read head in future compact hard disk systems. First, a crosstalk cancellation technique using a novel data encoding scheme is introduced to suppress electromagnetic interference (EMI) generated by the adjacent parallel I/Os . This technique is implemented utilizing a novel 8-4-PAM signaling with a data look-ahead algorithm. The key circuit components in the high-speed interface transceiver including the receive sampler, the phase interpolator, and the transmitter output driver are described in detail. Designed in a 0.13-μm digital CMOS process, the transceiver consumes 310 mW per 10-Gps channel from a I-V supply based on simulation results. Next, a 20-Gbps continuous-time adaptive passive equalizer utilizing on-chip lumped RLC components is described. Passive equalizers offer the advantages of higher bandwidth and lower power consumption compared with conventional designs using active filter. A low-power, continuous-time servo loop is designed to automatically adjust the equalizer frequency response for the optimal gain compensation. The equalizer not only adapts to different channel characteristics, but also accommodates temperature and process variations. Implemented in a 0.25-μm, 1P6M BiCMOS process, the equalizer can compensate up to 20 dB of loss at 10 GHz while only consumes 32 mW from a 2.5-V supply.


2013 ◽  
Vol 1538 ◽  
pp. 291-302
Author(s):  
Edward Yi Chang ◽  
Hai-Dang Trinh ◽  
Yueh-Chin Lin ◽  
Hiroshi Iwai ◽  
Yen-Ku Lin

ABSTRACTIII-V compounds such as InGaAs, InAs, InSb have great potential for future low power high speed devices (such as MOSFETs, QWFETs, TFETs and NWFETs) application due to their high carrier mobility and drift velocity. The development of good quality high k gate oxide as well as high k/III-V interfaces is prerequisite to realize high performance working devices. Besides, the downscaling of the gate oxide into sub-nanometer while maintaining appropriate low gate leakage current is also needed. The lack of high quality III-V native oxides has obstructed the development of implementing III-V based devices on Si template. In this presentation, we will discuss our efforts to improve high k/III-V interfaces as well as high k oxide quality by using chemical cleaning methods including chemical solutions, precursors and high temperature gas treatments. The electrical properties of high k/InSb, InGaAs, InSb structures and their dependence on the thermal processes are also discussed. Finally, we will present the downscaling of the gate oxide into sub-nanometer scale while maintaining low leakage current and a good high k/III-V interface quality.


Sign in / Sign up

Export Citation Format

Share Document