The Optimization Study about Technological Parameters of YAG Laser Precision Cutting Stainless Sheet

2013 ◽  
Vol 652-654 ◽  
pp. 2369-2373
Author(s):  
Gui Min Yin ◽  
Zhan Guo Li ◽  
Meng Li

Using high power Nd3+:YAG pulse laser for precision cutting stainless sheet, study the effects of the laser cutting technological parameters on quality of cutting surface and joint-cutting width. The data of single factor experiment proved: With the increasing of scanning velocity, the joint-cutting width decreased; the width increased with the increasing of scanning velocity, laser current, impulse frequency and impulse width; the increasing of impulse frequency may improve the processing quality and ultimate cutting speed; the data of two-factors experiment proved: when the output power and impulse width are fixed, the impulse frequency will be increased, the joint-cutting width will be decreased; when the output power and impulse frequency are fixed, the impulse width will be increased, the joint-cutting width will be decreased.

2014 ◽  
Vol 974 ◽  
pp. 389-393 ◽  
Author(s):  
Sen Liu ◽  
Dong Mei Wu ◽  
Jun Zhao

In orthopedic surgery, it is easy to do harm to surrounding tissues, so the study of bone cutting is necessary. In this article, a finite element model (FEM) of orthogonal bone cutting is developed. Cutting force intra-operatively can provide the surgeon with additional on-line information to support him to control quality of cutting surface. The obtained cutting force decreased little with cutting speed increasing, but ascended evidently with cutting depth increasing. The results of finite element simulations are aimed at providing optimization of cutting parameters and the basic information for hybrid force-velocity control of a robot-assisted bone milling system.


2018 ◽  
Vol 178 ◽  
pp. 01015 ◽  
Author(s):  
Uwe Teicher ◽  
Richard Schulze ◽  
Alexander Brosius ◽  
Andreas Nestler

The extension of technical capabilities of machine centres for complete machining of components can improve their performance. In the field of sheet metal machining, the objective beside the classic milling operation was a generation of functional surfaces by face brushing. The experimental studies have probed the influence of tools and technological parameters on the surface quality. In addition to an analysis of the relevant roughness parameters the formation of the surface topography was analysed by several measurement methods. By the application of force measurement, the results of the surface quality can be interpreted additionally. It could be shown that the feed rate in contrast to the cutting speed has the main influence on the surface roughness. A peculiarity is given by the parameter-based width of cut that should be known for reliable process control. The acquired data can be applied in the form of process characteristic fields for further processing with simulation and modelling methods.


2017 ◽  
Vol 17 (4) ◽  
pp. 109-114 ◽  
Author(s):  
J. Meško ◽  
R. Nigrovič ◽  
A. Zrak

Abstract This article deals with the technology and principles of the laser cutting of ductile cast iron. The properties of the CO2 laser beam, input parameters of the laser cutting, assist gases, the interaction of cut material and the stability of cutting process are described. The commonly used material (nodular cast iron - share of about 25% of all castings on the market) and the method of the laser cutting of that material, including the technological parameters that influence the cutting edge, are characterized. Next, the application and use of this method in mechanical engineering practice is described, focusing on fixing and renovation of mechanical components such as removing the inflow gate from castings with the desired quality of the cut, without the further using of the chip machining technology. Experimental samples from the nodular cast iron were created by using different technological parameters of laser cutting. The heat affected zone (HAZ), its width, microstructure and roughness parameter Pt was monitored on the experimental samples (of thickness t = 13 mm). The technological parameters that were varied during the experiments included the type of assist gases (N2 and O2), to be more specific the ratio of gases, and the cutting speed, which ranged from 1.6 m/min to 0.32 m/min. Both parameters were changed until the desired properties were achieved.


2020 ◽  
Vol 26 (2) ◽  
pp. 49-53
Author(s):  
Emil Spišák ◽  
Janka Majerníková ◽  
Ľuboš Kaščák ◽  
Peter Mulidran

The quality of the sheared surface when blanking, also known as die-cutting, is the result of several factors. Based on current knowledge about blanking, the following technological parameters – shear gap size, blunting of the shearing tool, lubrication in the shearing process, and deformation rate – can be considered as decisive parameters on the quality of the sheared surface. The main material characteristics include yield strength, tensile strength, ductility, and ferrite grain size. The paper is focused on the influence of the shear gap on the quality of the shear surface of electrical sheets with different chemical composition and different mechanical properties. The quality of the cutting surface was characterized by the size of the plastic cutting area. The relationships between the size of the shear gap, which ranged from 1 to 7% of the thickness of the cut material and the size of the plastic shear area, were evaluated and measured macroscopically.


2021 ◽  
pp. 39-47
Author(s):  
Gabit Maksutovich Bazenov

The article deals with the application of waterjet abrasive processing (cutting) in mechanical engineering. The data on the application areas, advantages, disadvantages and technological capabilities, as well as the world leaders in the production of waterjet cutting machines with technological characteristics are presented. In waterjet processing, the process is most influenced by the technological parameters: the speed of the jet, the grain size of the abrasive, the angle of inclination of the jet, the distance from the nozzle to the surface to be treated. Thus, the use of waterjet processing ensures minimal heat generation and accurate cutting of materials, the equipment is completely versatile and economical compared to plasma processing of the material reaching a cutting speed of 30,000 mm / min without affecting the quality of the cut, as well as the absence of surface heating, the likelihood of sparks make the use of water-abrasive machines as convenient and safe as possible.


2021 ◽  
Vol 249 ◽  
pp. 417-426
Author(s):  
Irina Khrustaleva ◽  
Sergei Lyubomudrov ◽  
Tatyana Larionova ◽  
Yana Brovkina

An increase of components production for the equipment intended for oil and gas production is a key factor for analyzing existing technological processes and searching for new technological solutions to improve the efficiency of the production process and the quality of components. The article presents a simulation model designed to determine the rational technological processing parameters for the production of the “Centralizer shell” part. The basis for optimizing the working cycle of a production line is synchronization based on the principle of proportionality, which involves equalizing the duration of all technological operations with the rhythm of the production line. Synchronization of technological operations on the production line is carried out by choosing rational cutting parameters for each technological transition (cutting speed, feedrate, number of working passes). The “Centralizer shell” part is made of titanium alloy VT16, which has high strength, corrosion resistance and ductility. For the part under consideration, the permissible values ​​of the cutting parameters were determined based on the calculation of the total processing error, as well as the frequency of replacement of the worn cutting tool. The simulation model described in the article made it possible to increase the efficiency of the production process due to the synchronization of technological operations and the search for rational technological parameters, as well as to improve the manufacturing quality of the “Centralizer shell” part by analyzing the processing error at various parameters of the technological process.


2020 ◽  
Vol 7 (3) ◽  
pp. 23-28
Author(s):  
EZIZ SARVAN SHIRVAN ◽  

This paper discusses the kinematic characteristics of lapping process and the main parameters of the process. It was determined that the influencing degree of technological parameters to the forming surface and processes. It was projected the construction of the lapping head for processing of internal cylindrical surfaces, scheme of the lapping operation and graphic description of the forces influencing. The relationships between the axial, radial and tangential cutting forces and the effect of the combined force thereof are determined in order to ensure the necessary surface pressure. During the analysis geometric and mathematical relationships were obtained. The extracted analytical expressions can be realized by further experimental researches and can be used in engineering calculations of technological parameters of processing by lapping. Angular velocity, friction force, linear velocity, also the length of the tactile curve and the radius of the part can be considered the main kinematic and dynamic parameters of the process that the formation of the surface, also the course of the process depends on these parameters. Depending on the kinematic parameters, the wear nature of the tool changes and this changes the linear and angular velocities, which have a significant impact on the accuracy, quality and productivity of processing. When examining the technological capabilities of the process, the nature of the movement between the part and the grinding tool, also changes in cutting speed are often considered as a main factor. Analytical expressions were obtained to determine the main parameters of the process, taking into account the kinematic characteristics of the friction process. These expressions can be used in engineering calculations and allow to determine the optimal values of the processing mode. In order to obtain the required micrometric surface cleanliness and measurement accuracy, correlation relationships were established between the main parameters of the process, equations of the equilibrium system of shear forces were compiled and analytical expressions were obtained based on the analysis of kinematic and dynamic properties of the system.


2013 ◽  
Vol 4 (1) ◽  
pp. 63-68 ◽  
Author(s):  
Zs. Kun ◽  
I. G. Gyurika

Abstract The stone products with different sizes, geometries and materials — like machine tool's bench, measuring machine's board or sculptures, floor tiles — can be produced automatically while the manufacturing engineer uses objective function similar to metal cutting. This function can minimise the manufacturing time or the manufacturing cost, in other cases it can maximise of the tool's life. To use several functions, manufacturing engineers need an overall theoretical background knowledge, which can give useful information about the choosing of technological parameters (e.g. feed rate, depth of cut, or cutting speed), the choosing of applicable tools or especially the choosing of the optimum motion path. A similarly important customer's requirement is the appropriate surface roughness of the machined (cut, sawn or milled) stone product. This paper's first part is about a five-month-long literature review, which summarizes in short the studies (researches and results) considered the most important by the authors. These works are about the investigation of the surface roughness of stone products in stone machining. In the second part of this paper the authors try to determine research possibilities and trends, which can help to specify the relation between the surface roughness and technological parameters. Most of the suggestions of this paper are about stone milling, which is the least investigated machining method in the world.


2015 ◽  
Vol 4 (2) ◽  
pp. 50-55
Author(s):  
Sandra J Nendissa ◽  
Rachel Breemer ◽  
Nikholaus Melamas

This objectives of this research were both to study and determine the best level of concentration of yeast Saccharomyces cereviseae and period of fermentation on the quality of tomi-tomi vinegar (Flacourtia inermis). A completely randomized experimental design with two factors of treatment was applied in this research. The first factor was concentration of yeast S. cereviseae having four levels of tretament, i.e.: without the addition of yeast 0.5, 1 and 1.5 g yeast. The second factor was period fermentation with 1, 2, 3, 4, and 5 weeks. The result indicated that the concentration of yeast S. cereviseae 1.5 g and period fermentation 5 week produced a good tomi-tomi vinegar with total acids 51.22%, total dissolved solids 8.35, total sugar 8.07% and pH 5.40.


2015 ◽  
Vol 1 (1) ◽  
pp. 13
Author(s):  
Putu Sucita Yanthy ◽  
Luh Gede Leli Kusuma Dewi ◽  
W. Citra Juwitasari

Bali is one of spa tourist destinations having various categories of spas and spa treatments, and the most important is the spa therapists. Spa development becomes an interesting phenomenon to be studied when it is associated with an involvement of Balinese women as spa therapists in foreign countries. The world’s demand for Balinese spa therapists has become the motivation of women to work in this area. The work and life of Balinese spa therapists while they are working in foreign countries serve as parameters to know their quality of life, and these parameters are also the main focus of this study. Through in-depth interviews and questionnaires distributed to 20 therapists it was found out that 85 percent of them have revealed an improvement in their quality of life that is influenced by two factors: the material and intimacy factors. The material factor in question refers to the economic improvement of the family as they could earn enough income to cover their family needs. The intimacy factor in question refers to closeness and a sense of solidarity fostered while they are working abroad and the relationship within the family. This study concludes that the most important part of the development of spa in Bali is its female Balinese spa therapists due to the image that Balinese women working as spa therapists are loyal, hard-working and honest making them in demand among tourists who are seeking spa treatments. Being a spa therapist can improve their quality of life, which means that subjectively both material and intimacy factors are the aspects that affect the quality of life of the Balinese spa therapists.


Sign in / Sign up

Export Citation Format

Share Document