Faculty Opinions recommendation of Differential transcriptional response of Bifidobacterium longum to human milk, formula milk, and galactooligosaccharide.

Author(s):  
Kenneth Croitoru
2008 ◽  
Vol 74 (15) ◽  
pp. 4686-4694 ◽  
Author(s):  
Rina González ◽  
Eline S. Klaassens ◽  
Erja Malinen ◽  
Willem M. de Vos ◽  
Elaine E. Vaughan

ABSTRACT In order to gain insight into the effects of human breast milk on the development of the intestinal bifidobacteria and associated health effects, the transcriptome of Bifidobacterium longum LMG 13197 grown in breast milk and formula milk containing galactooligosaccharides (GOS) and long-chain fructooligosaccharides was compared to that obtained in a semisynthetic medium with glucose. Total RNA was isolated from exponentially growing cells and hybridized to a clone library-based microarray. Inserts of clones with significant hybridization signals were sequenced and identified. The B. longum transcriptomes obtained during growth on human and formula milk were more similar to each other than to that obtained from growth in semisynthetic medium with glucose. Remarkably, there were only a few genes implicated in carbohydrate metabolism that were similarly upregulated during growth in both human and formula milk although oligosaccharides were added to the formula. Common highly upregulated genes notably included putative genes for cell surface type 2 glycoprotein-binding fimbriae that are implicated in attachment and colonization in the intestine. Genes involved in carbohydrate metabolism formed the dominant group specifically upregulated in breast milk and included putative genes for N-acetylglucosamine degradation and for metabolism of mucin and human milk oligosaccharides via the galactose/lacto-N-biose gene cluster. This supports the notion that the bifidogenic effect of human milk is to a great extent based on its oligosaccharides. The transcriptional effect of semisynthetic medium containing GOS, which, like human milk, contains a large amount of lactose and galactose, on the B. longum transcriptome was also studied and revealed substantial similarity with carbohydrate-utilization genes upregulated during growth in human milk. This knowledge provides leads to optimizing formula milk to better simulate the observed bifidogenic effects of human breast milk.


2018 ◽  
Vol 85 (2) ◽  
pp. 257-262 ◽  
Author(s):  
Antonella Santillo ◽  
Lucia Figliola ◽  
Maria G Ciliberti ◽  
Mariangela Caroprese ◽  
Rosaria Marino ◽  
...  

We report the fatty acid profile of raw milk and of the corresponding digested milk from different sources (human milk, formula milk and donkey, bovine, ovine and caprine milk) to gain information on the nutritional quality of different milk sources in infant nutrition.Short chain fatty acids (SC-FA) were higher in bovine and caprine milk, intermediate in ovine and donkey and lower in human and formula milk. Medium chain fatty acids (MC-FA) showed the highest values for bovine and caprine milk and the lowest for donkey and formula milk, whereas long chain fatty acids (LC-FA) were the highest in donkey and formula milk and intermediate in human milk.The percentage distribution of fatty acids liberated after in vitro digestion did not reflect the patterns found in the corresponding milk sources. In particular, MC free fatty acids (MC-FFA) showed the highest and the lowest values in donkey and in formula milk, LC-FFA showed the highest value in human milk. The total FFA was highest in human milk, lowest in formula milk and intermediate in donkey, bovine, ovine, and caprine milk.


2008 ◽  
Vol 101 (3) ◽  
pp. 376-382 ◽  
Author(s):  
Regina Celia Rocha Peres ◽  
Luciane Cristina Coppi ◽  
Maria Cristina Volpato ◽  
Francisco Carlos Groppo ◽  
Jaime Aparecido Cury ◽  
...  

The aim of the present study was to evaluate the cariogenicity of cows', human and infant formula milks, supplemented or not with fluoride, in rats. Sixty female Wistar rats were desalivated and infected withStreptococcus sobrinus6715.Animals were divided into six groups: group 1, sterilised deionised distilled water (SDW; negative control); group 2, 5 % sucrose added to SDW (positive control); group 3, human milk; group 4, cows' milk; group 5, Ninho®formula reconstituted with SDW; group 6, Ninho®formula reconstituted with 10 parts per million F and SDW. At day 21 the animals were killed and their jaws removed to quantify total cultivable microbiota,Strep. sobrinusand dental caries. The concentration of carbohydrate and fluoride in the milks was analysed. The Kruskal–Wallis test (α = 5 %) was used to analyse the data. The caries score by the milk formula was as high as that provoked by sucrose. Regarding smooth-surface caries, human milk was statistically more cariogenic than cows' milk, which did not differ from the SDW and the Ninho®with fluoride (P>0·05). Groups 2–6 showed higherStrep. sobrinuscounts when compared with the negative control group (P < 0·05) but no statistically significant difference was found among them (P>0·05). HPLC analysis showed that infant formula had 9·3 % sucrose and 3·6 % reducing sugars. The infant formula should be considered cariogenic due to the sugars found in it, but fluoride supplementation reduced its cariogenic effect. The human milk was more cariogenic than the cows' milk but not as much as the formula milk.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2285
Author(s):  
Tomoki Takahashi ◽  
Hirofumi Fukudome ◽  
Hiroshi M. Ueno ◽  
Shiomi Watanabe-Matsuhashi ◽  
Taku Nakano ◽  
...  

The benefits of probiotic supplementation to lactating mothers on human milk cytokines are inconclusive. Thus, we performed a comprehensive open-label pilot trial analysis of 27 human milk cytokines in lactating women with allergies (one to three months postpartum) to determine the effect of supplementation with a mixture of new probiotic strains. Participants voluntarily joined the probiotic (n = 41) or no supplementation control (n = 19) groups. The probiotic group took three probiotic tablets (Lactobacillus casei LC5, Bifidobacterium longum BG7, and Bacillus coagulans SANK70258) daily for one to three months postpartum. Milk samples were collected at one, two, and three months postpartum, and cytokine levels were measured using multiplex assays. The effects were analyzed using multivariate regression models. Eleven cytokines showed a positive rate of over 50% in the milk samples throughout testing in both groups. The positive rates of IL-1 receptor antagonist and IL-7 changed significantly with lactation progression in logistic regression models after adjusting for time and supplementation, whereas rates of other cytokines showed no significant differences. The lactational change patterns of IL-10 concentrations differed significantly between the two groups. A short-term supplementation of probiotics affects human milk cytokine levels in lactating women with a possible placebo effect still existing. Future placebo-controlled studies are needed to support these results, based on the estimated sample sizes in this study.


PEDIATRICS ◽  
1962 ◽  
Vol 30 (6) ◽  
pp. 909-916
Author(s):  
Herbert I. Goldman ◽  
Samuel Karelitz ◽  
Hedda Acs ◽  
Eli Seifter

One hundred four healthy premature infants, of birth weight 1,000 to 1,800 gm, were fed one of five feedings: (1) human milk; (2) human milk plus 13 meq/l of sodium chloride; (3) human milk plus 13 meq/l of sodium chloride and 18 meq/l of potassium chloride; (4) a half-skimmed cows milk formula; and (5) a partially-skimmed vegetable oil, cows milk formula. The infants fed any of the three human milk formulas gained weight at a slower rate than the infants fed either of the two cows milk formulas. Infants whose diets were changed from unmodified human milk to the half-skimmed cows milk gained large amounts of weight, and at times were visibly edematous. Infants whose diets were changed from the human milks with added sodium chloride, to the half-skimmed cows milk, gained lesser amounts of weight and did not become edematous. The infants fed the two cows milk diets gained similar amounts of weight, although one diet provided 6.5 gm/kg/day, the other 3.1 gm/kg/day of protein.


PEDIATRICS ◽  
1987 ◽  
Vol 80 (3) ◽  
pp. 434-438
Author(s):  
T. Tomomasa ◽  
P. E. Hyman ◽  
K. Itoh ◽  
J. Y. Hsu ◽  
T. Koizumi ◽  
...  

It is known that breast milk empties more quickly from the stomach than does infant formula. We studied the difference in gastroduodenal motility between neonates fed with human milk and those fed with infant formula. Twenty-four five-to 36-day-old neonates were fed with mother's breast milk or with a cow's milk-based formula. Postprandlial gastroduodenal contractions were recorded manometrically for three hours. Repetitive, high-amplitude nonmigrating contractions were the dominant wave form during the postprandial period. The number of episodes, duration, amplitude, and frequency of nonmigrating contractions were not different following the different feedings. The migrating myoelectric complex, which signals a return to the interdigestive (fasting) state, appeared in 75% of breast milk-fed infants but only 17% of formula-fed infants (P &lt; .05) within the three-hour recording period. Because contractions were similar following the two meals, but a fasting state recurred more rapidly in breast-fed infants, we conclude that factors other than phasic, nonpropagated antroduodenal contractions were responsible for the differences in gastric emptying between breast milk and formula.


Author(s):  
Miriam N. Ojima ◽  
Yuya Asao ◽  
Aruto Nakajima ◽  
Toshihiko Katoh ◽  
Motomitsu Kitaoka ◽  
...  

Human milk oligosaccharides (HMOs), which are natural bifidogenic prebiotics, were recently commercialized to fortify formula milk. However, HMO-assimilation phenotypes of bifidobacteria vary by species and strain, which has not been fully linked to strain genotype. We have recently shown that specialized uptake systems, particularly for the internalization of major HMOs (fucosyllactose (FL)), are associated with the formation of a bifidobacteria-rich gut microbial community. Phylogenetic analysis has revealed that FL transporters have diversified into two clades harboring four clusters within the Bifidobacterium genus, but the underpinning functional diversity associated with this divergence remains underexplored. In this study, we examined the HMO-consumption phenotypes of two bifidobacterial species, Bifidobacterium catenulatum subspecies kashiwanohense and Bifidobacterium pseudocatenulatum , which both possess FL binding proteins that belong to phylogenetic clusters with unknown specificities. Growth assays, heterologous gene expression experiments, and HMO-consumption analysis showed that the FL transporter type from B. catenulatum subspecies kashiwanohense JCM 15439 T conferred a novel HMO-uptake pattern that includes the complex fucosylated HMOs (lacto- N- fucopentaose II and lacto- N- difucohexaose I/II). Further genomic landscape analyses of FL transporter-positive bifidobacterial strains revealed that H-antigen or Lewis antigen-specific fucosidase gene(s) and FL transporter specificities were largely aligned. These results suggest that bifidobacteria have acquired FL transporters along with the corresponding gene sets necessary to utilize the imported HMOs. Our results provide insight into the species- and strain-dependent adaptation strategies of bifidobacteria to HMO-rich environments. Importance The gut of breastfed infants is generally dominated by health-promoting bifidobacteria. Human milk oligosaccharides (HMOs) from breastmilk selectively promote the growth of specific taxa such as bifidobacteria, thus forming an HMO-mediated, host-microbe symbiosis. While the co-evolution of humans and bifidobacteria has been proposed, the underpinning adaptive strategies employed by bifidobacteria require further research. Here, we analyzed the divergence of the critical fucosyllactose (FL) HMO transporter within Bifidobacterium . We have shown that the diversification of the solute-binding proteins of the FL-transporter led to uptake specificities of fucosylated sugars ranging from simple trisaccharides to complex hexasaccharides. This transporter and the congruent acquisition of the necessary intracellular enzymes allows for bifidobacteria to import different types of HMOs in a predictable and strain-dependent manner. These findings explain the adaptation and proliferation of bifidobacteria in the competitive and HMO-rich infant gut environment and enable accurate specificity annotation of transporters from metagenomic data.


2021 ◽  
pp. 089033442110603
Author(s):  
Eliot N. Haddad ◽  
Lynn E. Ferro ◽  
Kathleen E. B. Russell ◽  
Kameron Y. Sugino ◽  
Jean M. Kerver ◽  
...  

Background: Previous research examined effects of human milk on the infant gut microbiota, but little attention has been given to the microbiota of lactating women. Research Aim: To determine associations between exclusive human milk feeding and gut microbiota characteristics in mothers and infants at 6-weeks postpartum. Methods: A sample of mother–infant dyads ( N = 24) provided fecal samples and questionnaire responses at 6-weeks postpartum as part of the Pregnancy, EAting & POstpartum Diapers study. Deoxyribonucleic acid was extracted from stool samples, followed by (V4) 16S ribosomal ribonucleic acid gene amplicon sequencing. Alpha and beta diversity, in addition to taxa differences, were compared by human milk exposure status, exclusive versus non-exclusive. A subset of dyads (those exclusively fed human milk; n = 14) was analyzed for shared bifidobacterial species using polymerase chain reaction. Results: Alpha diversity was significantly lower in exclusively human milk-fed infants. Maternal lactation status (exclusive vs. partial) and Shannon diversity were associated in univariate analysis but were no longer associated in multivariable regression including body mass index category in the model. Beta diversity (Sorensen dissimilarity) of fecal samples from women and infants was significantly associated with human milk feeding. Of six infants with Bifidobacterium longum subspecies longum in their fecal samples, all their mothers shared the same species. Conclusion: Maternal gut microbiotas differ by lactation status, a relationship potentially confounded by body mass index category. Further research is needed to identify whether lactation directly influences the maternal gut microbiota, which may be another mechanism by which lactation influences health.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Tracy Shafizadeh ◽  
Steve Frese ◽  
Giorgio Casaburi

Abstract Objectives Human breastmilk contains complete nutrient composition required for the developing infant, including human milk oligosaccharides (HMO). These complex carbohydrates are indigestible by the infant alone, and require digestion by gut microbes, namely Bifidobacterium longum subsp. infantis (B. infantis). However, decades of C-section delivery, formula feeding and increasing exposure to antibiotics have contributed the loss of this critical infant-associated gut bacterium in developed countries. Therefore, restoring B. infantis to the infant gut was hypothesized to improve the nutritional utilization of human breastmilk in healthy term infants. Methods In an open trial, healthy, exclusively breastfed term infants were fed 1.8 × 1010 CFU B. infantis EVC001 daily from day 7–27 postnatal (n = 34; EVC001-fed), or breastmilk alone (n = 32; control group). Fecal samples, milk samples, and weekly self-reported data were collected and analyzed for infant gut microbiome composition and function, human milk oligosaccharide composition, and fecal metabolites. 16S rRNA sequencing and shotgun metagenome sequencing provided characterization of microbial communities from birth through 60 days postnatal. Results Infants fed B. infantis EVC001 were uniformly colonized with this organism at 1011 CFU/g feces, while infants in the control group had a median total Bifidobacterium level below 10^5 CFU/g feces, despite exclusive breastfeeding. Mass spectrometry of fecal samples from B. infantis EVC001-fed infants showed that the resulting microbial community produced higher concentrations of lactate and acetate and lower excretion of HMO, while control infants showed significantly lower ability to capture and utilize these carbohydrates from human milk. Importantly, HMO content of breastmilk was not significantly different between groups and no difference was found in the gut microbiome of infants based on secretor status of mothers (presence or absence of 2’FL in breastmilk). Further, these changes were associated with reductions in taxa that have been associated with negative health outcomes including colic, asthma, eczema and allergy. Conclusions Overall, colonization with B. infantis is observed to be an effective way to restore maximal function of the infant gut microbiome to improve nutrient availability in the breastfed infant. Funding Sources This study was funded by Evolve BioSystems, Inc.


2018 ◽  
Vol 35 (7-8) ◽  
pp. 190-3
Author(s):  
Johnwan Usman ◽  
Irfan Abdullah ◽  
Muhazar Muhazar ◽  
Atan Baas Sinuhaji ◽  
A. H. Sutanto

A prospective study on steatocrit value in full-term or preterm newborn babies of~ 2 days of age in Dr. Pimgadi Hospital, Medan is reported. This study was conducted from December 7, 1992, to February 7, 1993; there were 72 newborn babies (37 males and 35 females). The body weight was> 2500 gin 60 babies and s. 2500 gin 12 babies. The median steatocrit value in babies with body weight of> 2500 g was 9%, and it was 32% in babies less than 2500 g of body weight. The proportion of babies with > 25% steatocrit value was larger in babies less than 2500 g than that in 2500 g by the diet patterns of breast milk, breast milk and milk formula, milk formula. The proportion of babies with < 25% steatocrit value was higher in babies with body weight of< 2500 g than that in babies > 2500 g for those who had either breast milk, breast milk and milk formula or milk formula. There was significant difference (p<0,05) in the steatocrit levels between babies with the body weight of > 2500 g and those who had body weight of ≤ 2500 g.


Sign in / Sign up

Export Citation Format

Share Document